Compound X is a weak basic drug targeting the early stages of Parkinson's disease, for which a theoretical risk assessment has indicated that elevated gastric pH conditions could potentially result in reduced plasma concentrations. Different in vitro dissolution methodologies varying in level of complexity and a physiologically based pharmacokinetic (PBPK) absorption model demonstrated that the dissolution, solubility, and intestinal absorption of compound X was indeed reduced under elevated gastric pH conditions. These observations were confirmed in a crossover pharmacokinetic study in Beagle dogs.
View Article and Find Full Text PDFParkinson's disease, one of the most common neurodegenerative diseases, may not only affect the motor system, but also the physiology of the gastrointestinal tract. Delayed gastric emptying, impaired motility and altered intestinal bacteria are well-established consequences of the disease, which can have a pronounced effect on the absorption of orally administered drugs. In contrast, no studies have been performed into the composition of intestinal fluids.
View Article and Find Full Text PDFThis publication provides some industry reflections on experiences from the Chemistry, Manufacturing, and Controls (CMC) development and manufacture and supply of vaccines and therapies in response to the COVID-19 pandemic. It integrates these experiences with the outcomes from the collaborative work between industry and regulators in recent years on innovative science- and risk-based CMC strategies to the development of new, high-quality products for unmet medical needs. The challenges for rapid development are discussed and various approaches to facilitate accelerated development and global supply are collated for consideration.
View Article and Find Full Text PDFA webinar series that was organised by the Academy of Pharmaceutical Sciences Biopharmaceutics focus group in 2021 focused on the challenges of developing clinically relevant dissolution specifications (CRDSs) for oral drug products. Industrial scientists, together with regulatory and academic scientists, came together through a series of six webinars, to discuss progress in the field, emerging trends, and areas for continued collaboration and harmonisation. Each webinar also hosted a Q&A session where participants could discuss the shared topic and information.
View Article and Find Full Text PDFTraditionally, excipients have been considered in drug development from the perspective of their influence on drug solubility, manufacturability, and ability to control in vitro and in vivo drug release. These effects have been largely evaluated through studies involving in vitro dissolution methods. However, there is a growing awareness that what had previously been considered biologically inert excipients can exert numerous in vivo effects.
View Article and Find Full Text PDFA Correction to this paper has been published: https://doi.org/10.1208/s12248-020-00534-0.
View Article and Find Full Text PDFThis report summarizes the proceedings for Day 3 of the workshop titled "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, patient-centric product development necessitates the development of clinically relevant drug product specifications (CRDPS). In this regard, Physiologically Based Biopharmaceutics modeling (PBBM) is a viable tool to establish links between in-vitro to in-vivo data, and support with establishing CRDPS.
View Article and Find Full Text PDFThis workshop report summarizes the proceedings of Day 2 of a three-day workshop on "Current State and Future Expectations of Translational Modeling Strategies toSupportDrug Product Development, Manufacturing Changes and Controls". From a drug product quality perspective, physiologically based biopharmaceutics modeling (PBBM) is a tool to link variations in the drug product quality attributes to in vivo outcomes enabling the establishment of clinically relevant drug product specifications (CRDPS). Day 2 of the workshop focused on best practices in developing, verifying and validating PBBM.
View Article and Find Full Text PDFOral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico.
View Article and Find Full Text PDFDecision-making in drug development benefits from an integrated systems approach, where the stakeholders identify and address the critical questions for the system through carefully designed and performed studies. Biopharmaceutics Risk Assessment Roadmap (BioRAM) is such a systems approach for application of systems thinking to patient focused and timely decision-making, suitable for all stages of drug discovery and development. We described the BioRAM therapy-driven drug delivery framework, strategic roadmap, and integrated risk assessment instrument (BioRAM Scoring Grid) in previous publications (J Pharm Sci 103:3377-97, 2014; J Pharm Sci 105:3243-55, 2016).
View Article and Find Full Text PDFMedicine co-administration with food or drink vehicles is a common administration practice in paediatrics. The aims of this review were (i) to describe the current recommended strategies for co-administration of paediatric medicines with food and drinks (vehicles); (ii) to compare current administration recommendations from different countries; and (iii) to obtain a global perspective on the rationale behind the choice of recommended vehicle, in the context of the physicochemical properties of the drug and formulation. This study used a defined search strategy on the practices of paediatric medicine co-administration with vehicles, recommended in a commonly used paediatric and neonatal handbook, in addition to the information previously gathered from UK formularies.
View Article and Find Full Text PDFThe release and absorption profile of an oral medication is influenced by the physicochemical properties of the drug and its formulation, as well as by the anatomy and physiology of the gastrointestinal (GI) tract. During drug development the bioavailability of a new drug is typically assessed in early clinical studies in a healthy adult population. However, many disease conditions are associated with an alteration of the anatomy and/or physiology of the GI tract.
View Article and Find Full Text PDFThe presence of different excipient types/brands in solid oral dosage forms may affect product performance and drug bioavailability. Understanding the biopharmaceutical implications of superdisintegrant variability (changes in material properties), variation (changes in excipient amount) and interchangeability (use of different excipient types with the same intended functionality) in oral drug performance would be beneficial for the development of robust final dosage forms. The current study investigated the impact of superdisintegrants (sodium starch glycolate, croscarmellose sodium, crospovidone) on the apparent solubility of drugs with different physicochemical properties (drug ionisation, drug lipophilicity, drug aqueous solubility).
View Article and Find Full Text PDFA meeting that was organized by the Academy of Pharmaceutical Sciences Biopharmaceutics and Regulatory Sciences focus groups focused on the challenges of Developing Clinically Relevant Dissolution Specifications (CRDS) for Oral Drug Products. Industrial Scientists that were involved in product development shared their experiences with in vitro dissolution and in silico modeling approaches to establish clinically relevant dissolution specifications. The regulators shared their perspectives on the acceptability of these different strategies for the development of acceptable specifications.
View Article and Find Full Text PDFBackground: Of the various drug therapies that influence gastrointestinal (GI) physiology, one of the most important are the acid-reducing agents (ARAs). Because changes in GI physiology often influence the pharmacokinetics of drugs given orally, there is a need to identify in vitro methods with which such effects can be elucidated.
Objective: Literature concerning the effects of ARAs (antacids, H-receptor antagonists, and proton pump inhibitors [PPIs]) on GI physiology are reviewed with the aim of identifying conditions under which drugs are released after oral administration in the fasted state.
Eur J Pharm Biopharm
August 2019
The potential for certain excipients to impact drug absorption is the subject of numerous publications. Reflecting this, current Biopharmaceutics Classification System (BCS) guidelines place restrictions on the level of change in excipients to be eligible for a BCS biowaiver. The degree of change permitted between test and reference formulations varies between BCS Class 1 and 3, and also across different regulatory authorities.
View Article and Find Full Text PDFTwo clinical studies were performed in healthy volunteers to investigate food and antacid effects on lesinurad, a novel selective uric acid reabsorption inhibitor approved for treatment of hyperuricemia associated with gout in combination with xanthine oxidase inhibitors. Study 1 evaluated a high-fat, high-calorie meal or high doses of antacids (3000 mg calcium carbonate or 1600 mg magnesium hydroxide/1600 mg aluminum hydroxide) on the pharmacokinetics (PK) and pharmacodynamics (PD) of 400 mg oral lesinurad. Study 2 evaluated low doses of antacids (1250 mg calcium carbonate or 800 mg magnesium hydroxide/800 mg aluminum hydroxide) on the PK and PD of 400 mg lesinurad.
View Article and Find Full Text PDFThis article intends to summarize the current views of the IQ Consortium Dissolution Working Group, which comprises various industry companies, on the roles of dissolution testing throughout pharmaceutical product development, registration, commercialization, and beyond. Over the past 3 decades, dissolution testing has evolved from a routine and straightforward test as a component of end-product release into a comprehensive set of tools that the developer can deploy at various stages of the product life cycle. The definitions of commonly used dissolution approaches, how they relate to one another and how they may be applied in modern drug development, and life cycle management is described in this article.
View Article and Find Full Text PDFThis manuscript represents the perspective of the Dissolution Analytical Working Group of the IQ Consortium. The intent of this manuscript is to highlight the challenges of, and to provide a recommendation on, the development of clinically relevant dissolution specifications (CRS) for immediate release (IR) solid oral dosage forms. A roadmap toward the development of CRS for IR products containing active ingredients with a non-narrow therapeutic window is discussed, within the context of mechanistic dissolution understanding, supported by in-human pharmacokinetic (PK) data.
View Article and Find Full Text PDFPurpose: Fostamatinib is an orally dosed phosphate prodrug that is cleaved by intestinal alkaline phosphatase to the active metabolite R406. Clinical studies were performed to assess the effect of food and ranitidine on exposure, to support in vitro-in vivo relationships (IVIVR) understanding and formulation transitions and to investigate absolute oral bioavailability.
Methods: A series of in vitro dissolution and clinical pharmacokinetic studies were performed to support the design and introduction of a new formulation, understand the impact of changes in in vitro dissolution on in vivo performance for two fostamatinib formulations, to characterize the effects of food and ranitidine on exposure, and determine the absolute oral bioavailability.
Objectives: This review focuses on the recommended strategies for the oral administration of paediatric medicines with food in the context of their biopharmaceutical properties.
Key Findings: Acceptability of oral medicines in young patients is more challenging than in adult patients. Mixing oral dosage forms with foods and drinks is sometimes suggested to administer a specific dose and enhance compliance in the paediatric population.
The aim of Biopharmaceutics Risk Assessment Roadmap (BioRAM) and the BioRAM Scoring Grid is to facilitate optimization of clinical performance of drug products. BioRAM strategy relies on therapy-driven drug delivery and follows an integrated systems approach for formulating and addressing critical questions and decision-making (J Pharm Sci. 2014,103(11): 3777-97).
View Article and Find Full Text PDFIn silico absorption modeling has been performed, to assess the impact of in vitro dissolution on in vivo performance for ZURAMPIC (lesinurad) tablets. The dissolution profiles of lesinurad tablets generated using the quality control method were used as an input to a GastroPlus model to estimate in vivo dissolution in the various parts of the GI tract and predict human exposure. A model was set up, which accounts for differences of dosage form transit, dissolution, local pH in the GI tract, and fluid volumes available for dissolution.
View Article and Find Full Text PDFThe aim of this research survey was to understand current global thinking around the need for and development of a paediatric biopharmaceutics classification system (pBCS) to be used for the development of paediatric medicines and regulatory purposes (e.g. Biowaivers).
View Article and Find Full Text PDFRegulatory interactions are an important part of the drug development and licensing process. A survey on the use of biopharmaceutical tools for regulatory purposes has been carried out within the industry community of the EU project OrBiTo within Innovative Medicines Initiative (IMI). The aim was to capture current practice and experience in using in vitro and in silico biopharmaceutics tools at various stages of development, what barriers exist or are perceived, and to understand the current gaps in regulatory biopharmaceutics.
View Article and Find Full Text PDF