In eukaryotes, pre-mRNA splicing is vital for RNA processing and orchestrated by the spliceosome, whose assembly starts with the interaction between U1-70K and SR proteins. Despite the significance of the U1-70K/SR interaction, the dynamic nature of the complex and the challenges in obtaining soluble U1-70K have impeded a comprehensive understanding of the interaction at the structural level for decades. We overcome the U1-70K solubility issues, enabling us to characterize the interaction between U1-70K and SRSF1, a representative SR protein.
View Article and Find Full Text PDFU1-70K (snRNP70) serves as an indispensable protein component within the U1 complex, assuming a pivotal role in both constitutive and alternative RNA splicing processes. Notably, U1-70K engages in interactions with SR proteins, instigating the assembly of the spliceosome. This protein undergoes regulation through phosphorylation at multiple sites.
View Article and Find Full Text PDFSRSF1 governs splicing of over 1500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity.
View Article and Find Full Text PDFSRSF1 governs splicing of over 1,500 mRNA transcripts. SRSF1 contains two RNA-recognition motifs (RRMs) and a C-terminal Arg/Ser-rich region (RS). It has been thought that SRSF1 RRMs exclusively recognize single-stranded exonic splicing enhancers, while RS lacks RNA-binding specificity.
View Article and Find Full Text PDFElectronegative clusters (ENCs) made up of acidic residues and/or phosphorylation sites are the most abundant repetitive sequences in RNA-binding proteins. Previous studies have indicated that ENCs inhibit RNA binding for structured RNA-binding domains (RBDs). However, this is not the case for the unstructured RBD in histone pre-mRNA stem-loop binding protein (SLBP).
View Article and Find Full Text PDFPhase separation plays crucial roles in both sustaining cellular function and perpetuating disease states. Despite extensive studies, our understanding of this process is hindered by low solubility of phase-separating proteins. One example of this is found in SR and SR-related proteins.
View Article and Find Full Text PDFSer/Arg-rich splicing factor 1 (SRSF1 or ASF/SF2) is the prototypical member of SR proteins. SRSF1 binds to exonic splicing enhancers, which prompts inclusion of corresponding exons in the mature mRNA. The RNA-binding domain of SRSF1 consists of tandem RNA-recognition motifs (RRM1 and RRM2) separated by a 30 amino acid long linker.
View Article and Find Full Text PDFRNA-binding proteins play crucial roles in various cellular functions and contain abundant disordered protein regions. The disordered regions in RNA-binding proteins are rich in repetitive sequences, such as poly-K/R, poly-N/Q, poly-A, and poly-G residues. Our bioinformatic analysis identified a largely neglected repetitive sequence family we define as electronegative clusters (ENCs) that contain acidic residues and/or phosphorylation sites.
View Article and Find Full Text PDFResidual dipolar couplings (RDCs) provide valuable NMR parameters that can be used for structural calculation and verification. Measuring RDCs requires aligning macromolecules using one of various types of alignment media. Of different alignment media options, stretched or compressed polyacrylamide gels are advantageous due to their chemical stability.
View Article and Find Full Text PDF