The authors wish to make minor corrections to Figure 1 and Figure 2 of the following paper [...
View Article and Find Full Text PDFTumor Treating Fields (TTFields) are electric fields that exert physical forces to disrupt cellular processes critical for cancer cell viability and tumor progression. TTFields induce anti-mitotic effects through the disruption of the mitotic spindle and abnormal chromosome segregation, which trigger several forms of cell death, including immunogenic cell death (ICD). The efficacy of TTFields concomitant with anti-programmed death-1 (anti-PD-1) treatment was previously shown in vivo and is currently under clinical investigation.
View Article and Find Full Text PDFDespite the availability of numerous therapeutic substances that could potentially target CNS disorders, an inability of these agents to cross the restrictive blood-brain barrier (BBB) limits their clinical utility. Novel strategies to overcome the BBB are therefore needed to improve drug delivery. We report, for the first time, how Tumor Treating Fields (TTFields), approved for glioblastoma (GBM), affect the BBB's integrity and permeability.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC), a highly aggressive liver cancer, is a leading cause of cancer-related death. Tumor Treating Fields (TTFields) are electric fields that exert antimitotic effects on cancerous cells. The aims of the current research were to test the efficacy of TTFields in HCC, explore the underlying mechanisms, and investigate the possible combination of TTFields with sorafenib, one of the few front-line treatments for patients with advanced HCC.
View Article and Find Full Text PDFObjectives: Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields with antimitotic effects on cancerous cells. TTFields concomitant with pemetrexed and a platinum agent are approved in the US and EU as first line therapy for unresectable, locally advanced or metastatic malignant pleural mesothelioma (MPM). The goal of the current study was to characterize the mechanism of action of TTFields in MPM cell lines and animal models.
View Article and Find Full Text PDFTumor Treating Fields (TTFields) are noninvasive, alternating electric fields within the intermediate frequency range (100-300 kHz) that are utilized as an antimitotic cancer treatment. TTFields are loco-regionally delivered to the tumor region through 2 pairs of transducer arrays placed on the skin. This novel treatment modality has been FDA-approved for use in patients with glioblastoma and malignant pleural mesothelioma based on clinical trial data demonstrating efficacy and safety; and is currently under investigation in other types of solid tumors.
View Article and Find Full Text PDFTumor-treating fields (TTFields) are alternating electric fields in a specific frequency range (100-300 kHz) delivered to the human body through transducer arrays. In this study, we evaluated whether TTFields-mediated cell death can elicit antitumoral immunity and hence would be effectively combined with anti-PD-1 therapy. We demonstrate that in TTFields-treated cancer cells, damage-associated molecular patterns including high-mobility group B1 and adenosine triphosphate are released and calreticulin is exposed on the cell surface.
View Article and Find Full Text PDFTumor Treating Fields (TTFields), an approved treatment modality for glioblastoma, are delivered via non-invasive application of low-intensity, intermediate-frequency, alternating electric fields. TTFields application leads to abnormal mitosis, aneuploidy, and increased cell granularity, which are often associated with enhancement of autophagy. In this work, we evaluated whether TTFields effected the regulation of autophagy in glioma cells.
View Article and Find Full Text PDFBackground: Tumor Treating Fields (TTFields) are an anti-neoplastic treatment modality delivered via application of alternating electric fields using insulated transducer arrays placed directly on the skin in the region surrounding the tumor. A Phase 3 clinical trial has demonstrated the effectiveness of continuous TTFields application in patients with glioblastoma during maintenance treatment with Temozolomide. The goal of this study was to evaluate the efficacy of combining TTFields with radiation treatment (RT) in glioma cells.
View Article and Find Full Text PDFTumor Treating Fields (TTFields) are an effective treatment modality delivered via the continuous, noninvasive application of low-intensity (1-3 V/cm), alternating electric fields in the frequency range of several hundred kHz. The study of TTFields in tissue culture is carried out using the TTFields in vitro application system, which allows for the application of electric fields of varying frequencies and intensities to ceramic Petri dishes with a high dielectric constant (Ɛ > 5,000). Cancerous cell lines plated on coverslips at the bottom of the ceramic Petri dishes are subjected to TTFields delivered in two orthogonal directions at various frequencies to facilitate treatment outcome tests, such as cell counts and clonogenic assays.
View Article and Find Full Text PDFLong-term survival rates for advanced ovarian cancer patients have not changed appreciably over the past four decades; therefore, development of new, effective treatment modalities remains a high priority. Tumor Treating Fields (TTFields), a clinically active anticancer modality utilize low-intensity, intermediate frequency, alternating electric fields. The goal of this study was to evaluate the efficacy of combining TTFields with paclitaxel against ovarian cancer cells in vitro and in vivo.
View Article and Find Full Text PDFTumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules.
View Article and Find Full Text PDFAcquired resistance to therapy is a major obstacle in clinical oncology, and little is known about the contributing mechanisms of the host response to therapy. Here, we show that the proinflammatory cytokine IL1β is overexpressed in response to paclitaxel chemotherapy in macrophages, subsequently promoting the invasive properties of malignant cells. In accordance, blocking IL1β, or its receptor, using either genetic or pharmacologic approach, results in slight retardation of primary tumor growth; however, it accelerates metastasis spread.
View Article and Find Full Text PDFTumor progression is often associated with the development of diverse immune escape mechanisms. One of the main tumor escape mechanism is HLA loss, in which human solid tumors exhibit alterations in HLA expression. Moreover, tumors that present immunogenic peptides via class I MHC molecules are not susceptible to CTL-mediated lysis, because of the relatively low potency of the tumor-specific CLTs.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) is one of the leading causes of cancer-related deaths worldwide. Common treatment modalities for NSCLC include surgery, radiotherapy, chemotherapy, and, in recent years, the clinical management paradigm has evolved with the advent of targeted therapies. Despite such advances, the impact of systemic therapies for advanced disease remains modest, and as such, the prognosis for patients with NSCLC remains poor.
View Article and Find Full Text PDFWeekly gemcitabine therapy is the major treatment offered for patients with pancreatic adenocarcinoma cancer; however, relative resistance of tumor cells to chemotherapy, rapid regrowth, and metastasis are the main causes of death within a year. Recently, the daily continuous administration of chemotherapy in low doses--called metronomic chemotherapy (MC)--has been shown to inhibit primary tumor growth and delay metastases in several tumor types; however, its use as a single therapy is still in question due to its moderate therapeutic benefit. Here, we show that the combination of weekly gemcitabine with MC of the same drug delays tumor regrowth and inhibits metastasis in mice implanted orthotopically with pancreatic tumors.
View Article and Find Full Text PDFA wide spectrum of both normal and diseased cell types shed extracellular vesicles that facilitate intercellular communication without direct cell-to-cell contact. Microparticles (MPs) are a subtype of extracellular vesicles that participate in multiple biological processes. They carry abundant bioactive molecules including different forms of nucleic acids and proteins that can markedly modulate cellular behavior.
View Article and Find Full Text PDFAcute chemotherapy can induce rapid bone-marrow derived pro-angiogenic cell (BMDC) mobilization and tumor homing, contributing to tumor regrowth. To study the contribution of tumor cells to tumor regrowth following therapy, we focused on tumor-derived microparticles (TMPs). EMT/6 murine-mammary carcinoma cells exposed to paclitaxel chemotherapy exhibited an increased number of TMPs and significantly altered their angiogenic properties.
View Article and Find Full Text PDFWe previously reported that the host response to certain chemotherapies can induce primary tumor regrowth, angiogenesis, and even metastases in mice, but the possible impact of anti-VEGF-A therapy in this context has not been fully explored. We, therefore, used combinations of anti-VEGF-A with chemotherapy on various tumor models in mice, including primary tumors, experimental lung metastases, and spontaneous lung metastases of 4T1-breast and CT26-colon murine cancer cell lines. Our results show that a combined treatment with anti-VEGF-A and folinic acid/5-fluorouracil/oxaliplatin (FOLFOX) but not with anti-VEGF-A and gemcitabine/cisplatinum (Gem/CDDP) enhances the treatment outcome partly due to reduced angiogenesis, in both primary tumors and experimental lung metastases models.
View Article and Find Full Text PDFLysyl oxidase-like 2 (LOXL2), a secreted enzyme that catalyzes the cross-linking of collagen, plays an essential role in developmental angiogenesis. We found that administration of the LOXL2-neutralizing antibody AB0023 inhibited bFGF-induced angiogenesis in Matrigel plug assays and suppressed recruitment of angiogenesis promoting bone marrow cells. Small hairpin RNA-mediated inhibition of LOXL2 expression or inhibition of LOXL2 using AB0023 reduced the migration and network-forming ability of endothelial cells, suggesting that the inhibition of angiogenesis results from a direct effect on endothelial cells.
View Article and Find Full Text PDFAlmost any type of anti-cancer treatment including chemotherapy, radiation, surgery and targeted drugs can induce host molecular and cellular immunological effects which, in turn, can lead to tumor outgrowth and relapse despite an initial successful therapy outcome. Tumor relapse due to host immunological effects is attributed to angiogenesis, tumor cell dissemination from the primary tumors and seeding at metastatic sites. This short review will describe the types of host cells that participate in this process, the types of factors secreted from the host following therapy that can promote tumor re-growth, and the possible implications of this unique and yet only partially-known process.
View Article and Find Full Text PDFTumor-initiating cells (TICs) are a subtype of tumor cells believed to be critical for initiating tumorigenesis. We sought to determine the angiogenic properties of TICs in different tumor types including U-87MG (glioblastoma), HT29 (colon), MCF7 (breast), A549 (non-small-cell lung), and PANC1 (pancreatic) cancers. Long-term cultures grown either as monolayers ("TIC-low") or as nonadherent tumor spheres ("TIC-high") were generated.
View Article and Find Full Text PDFMounting evidence suggests that bone marrow-derived cells (BMDC) contribute to tumor growth, angiogenesis, and metastasis. In acute reactions to cancer therapy, several types of BMDCs are rapidly mobilized to home tumors. Although this host reaction to therapy can promote tumor regrowth, its contribution to metastasis has not been explored.
View Article and Find Full Text PDFRecombinant granulocyte colony-stimulating factor (G-CSF) is used to accelerate recovery from chemotherapy-induced myelosuppression. G-CSF has been recently shown to stimulate angiogenesis mediated by several types of bone marrow-derived cell populations. To investigate whether G-CSF may alter tumor response to therapy, we studied Lewis lung and EMT/6 breast carcinomas in mice treated with paclitaxel (PTX) chemotherapy in combination with G-CSF.
View Article and Find Full Text PDF