Publications by authors named "Tali Vaisid"

Previously, we showed that contamination of SH-SY5Y neuroblastoma cells by Mycoplasma hyorhinis strains NDMh and MCLD leads to increased levels of calpastatin (the endogenous, specific inhibitor of the Ca2+-dependent protease calpain), resulting in inhibition of calpain activation. We have found that the increased calpastatin level is promoted by the lipoprotein fraction (MhLpp) of the mycoplasmal membrane. Here, we present MhLpp-based novel synthetic lipopeptides that induce upregulation of calpastatin in SH-SY5Y neuroblastoma cells, leading to protection of the treated cells against Ca2+/amyloid-β-peptide toxicity.

View Article and Find Full Text PDF

Mycoplasma hyorhinis frequently contaminates cultured cells, with effects on synthetic and metabolic pathways. We demonstrated for the first time that contamination of cells by a strain of M. hyorhinis (NDMh) results in increased levels of calpastatin (the endogenous inhibitor of the ubiquitous Ca(2+) -dependent protease calpain).

View Article and Find Full Text PDF

Mycoplasmas are frequent contaminants of cell cultures. Contamination leads to altered synthetic and metabolic pathways. We have found that contamination of neuroblastoma SH-SY5Y cells by a strain of Mycoplasma hyorhinis derived from SH-SY5Y cell culture (NDMh) leads to increased levels of calpastatin (the endogenous inhibitor of the Ca(2+)-dependent protease, calpain) in NDMh-infected cells.

View Article and Find Full Text PDF

Mycoplasmas often contaminate cultured cells, leading to alterations in cellular gene expression, protein synthesis, signal transduction and metabolic pathways. Mycoplasmal contamination is often unnoticed, so that mycoplasma-induced alterations in cell functions may not be appreciated, unless specifically studied. Here, we show for the first time that contamination of SH-SY5Y cells by Mycoplasma hyorhinis leads to increased levels of calpastatin (the endogenous inhibitor of the Ca(2+)-dependent protease calpain), resulting in inhibition of Ca(2+)-induced calpain activation and inhibition of calpain-promoted proteolysis in the mycoplasmal-infected cells.

View Article and Find Full Text PDF

The neurotoxic amyloid-beta-peptide (Abeta) is important in the pathogenesis of Alzheimer's disease (AD). Calpain (Ca(2+)-dependent protease) and caspase-8 (the initiating caspase for the extrinsic, receptor-mediated apoptosis pathway) have been implicated in AD/Abeta toxicity. We previously found that Abeta promoted degradation of calpastatin (the specific endogenous calpain inhibitor); calpastatin degradation was prevented by inhibitors of either calpain or caspase-8.

View Article and Find Full Text PDF

Amyloid beta peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease (AD). The peptide is toxic to neurons, possibly by causing initial synaptic dysfunction and neuronal membrane dystrophy, promoted by increased cellular Ca(2+). Calpain (Ca(2+)-dependent protease) and caspase have also been implicated in AD.

View Article and Find Full Text PDF

The intracellular Ca(2+)-dependent protease calpain and the specific calpain endogenous inhibitor calpastatin are widely distributed, with the calpastatin/calpain ratio varying among tissues and species. Increased Ca(2+) and calpain activation have been implicated in Alzheimer's disease (AD), with scant data available on calpastatin/calpain ratio in AD. Information is lacking on calpain activation and calpastatin levels in transgenic mice that exhibit AD-like pathology.

View Article and Find Full Text PDF