Publications by authors named "Tali Mass"

Foraminifera are unicellular protists capable of precipitating calcite tests, which fossilize and preserve geochemical signatures of past environmental conditions dating back to the Cambrian period. The biomineralization mechanisms responsible for the mineral structures, which are key to interpreting palaeoceanographic signals, are poorly understood. Here, we present an extensive analysis of the test-bound proteins.

View Article and Find Full Text PDF

Corals residing in habitats that experience high-frequency seawater pCO variability may possess an enhanced capacity to cope with ocean acidification, yet we lack a clear understanding of the molecular toolkit enabling acclimatisation to environmental extremes or how life-long exposure to pCO variability influences biomineralisation. Here, we examined the gene expression responses and micro-skeletal characteristics of Pocillopora damicornis originating from the reef flat and reef slope of Heron Island, southern Great Barrier Reef. The reef flat and reef slope had similar mean seawater pCO, but the reef flat experienced twice the mean daily pCO amplitude (range of 797 v.

View Article and Find Full Text PDF

The ratio of Sr/Ca ions in marine biogenic minerals is considered advantageous for tracking geochemical and biomineralization processes that occur in the oceans. It is debatable, though, whether the ratio in biominerals such as coral skeleton is simply related to values in the seawater environment or controlled by the organism. Recent data show that coral larvae produce partially disordered immature aragonite in Mg-containing Sr-poor calcifying fluids, which transforms into well-ordered aragonite in Mg-depleted Sr-enriched environments, upon animal metamorphosis into the sessile polyp state.

View Article and Find Full Text PDF

Mesophotic coral reefs have been proposed as refugia for corals, providing shelter and larval propagules for shallow water reefs that are disproportionately challenged by global climate change and local anthropogenic stressors. For mesophotic reefs to be a viable refuge, firstly, deep origin larvae must survive on shallow reefs and, secondly, the two environments must be physically connected. This study tested the first condition.

View Article and Find Full Text PDF

Coral reefs provide ecosystem benefits to millions of people but are threatened by rapid environmental change and ever-increasing human pressures. Restoration is becoming a priority strategy for coral reef conservation, yet implementation remains challenging and it is becoming increasingly apparent that indirect conservation and restoration approaches will not ensure the long-term sustainability of coral reefs. The important role of environmental conditions in restoration practice are currently undervalued, carrying substantial implications for restoration success.

View Article and Find Full Text PDF

The distribution of symbiotic scleractinian corals is driven, in part, by light availability, as host energy demands are partially met through translocation of photosynthate. Physiological plasticity in response to environmental conditions, such as light, enables the expansion of resilient phenotypes in the face of changing environmental conditions. Here we compared the physiology, morphology, and taxonomy of the host and endosymbionts of individual Madracis pharensis corals exposed to dramatically different light conditions based on colony orientation on the surface of a shipwreck at 30 m depth in the Bay of Haifa, Israel.

View Article and Find Full Text PDF

The widespread decline of shallow-water coral reefs has fueled interest in assessing whether mesophotic reefs can act as refugia replenishing deteriorated shallower reefs through larval exchange. Here we explore the morphological and molecular basis facilitating survival of planulae and adults of the coral Porites astreoides (Lamarck, 1816; Hexacorallia: Poritidae) along the vertical depth gradient in Bermuda. We found differences in micro-skeletal features such as bigger calyxes and coarser surface of the skeletal spines in shallow corals.

View Article and Find Full Text PDF

Bio-invasions have the potential to provoke cascade effects that can disrupt natural ecosystems and cause ecological regime shifts. The Mediterranean Sea is particularly prone to bio-invasions as the changing water conditions, evoked by climate change, are creating advantageous conditions for Lessepsian migrants from the Red Sea. Recently, in May 2023, a new alien species was documented in the Mediterranean Sea-a soft coral of the genus This discovery was made by divers conducting 'Long-Term Ecological Research' surveys, along the coast of Israel, at a depth of 42 m.

View Article and Find Full Text PDF

Scleractinia coral skeleton formation occurs by a heterogeneous process of nucleation and growth of aragonite in which intraskeletal soluble organic matrix molecules, usually referred to as SOM, play a key role. Several studies have demonstrated that they influence the shape and polymorphic precipitation of calcium carbonate. However, the structural aspects that occur during the growth of aragonite have received less attention.

View Article and Find Full Text PDF

Mesophotic reefs have been proposed as climate change refugia but are not synonymous ecosystems with shallow reefs and remain exposed to anthropogenic impacts. Planulae from the reef-building coral , Gulf of Aqaba, from 5- and 45-m depth were tested for capacity to settle, grow, and acclimate to reciprocal light conditions. Skeletons were scanned by phase contrast-enhanced micro-CT to study morphology.

View Article and Find Full Text PDF

The alarming rate of climate change demands new management strategies to protect coral reefs. Environments such as mangrove lagoons, characterized by extreme variations in multiple abiotic factors, are viewed as potential sources of stress-tolerant corals for strategies such as assisted evolution and coral propagation. However, biological trade-offs for adaptation to such extremes are poorly known.

View Article and Find Full Text PDF

Cyclic GMP-AMP synthase (cGAS) is an enzyme in human cells that controls an immune response to cytosolic DNA. Upon binding DNA, cGAS synthesizes a nucleotide signal 2'3'-cGAMP that activates STING-dependent downstream immunity. Here, we discover that cGAS-like receptors (cGLRs) constitute a major family of pattern recognition receptors in innate immunity.

View Article and Find Full Text PDF

Ocean acidification caused by shifts in ocean carbonate chemistry resulting from increased atmospheric CO concentrations is threatening many calcifying organisms, including corals. Here we assessed autotrophy vs heterotrophy shifts in the Mediterranean zooxanthellate scleractinian coral Balanophyllia europaea acclimatized to low pH/high pCO conditions at a CO vent off Panarea Island (Italy). Dinoflagellate endosymbiont densities were higher at lowest pH Sites where changes in the distribution of distinct haplotypes of a host-specific symbiont species, Philozoon balanophyllum, were observed.

View Article and Find Full Text PDF

Stony corals (order: Scleractinia) differ in growth form and structure. While stony corals have gained the ability to form their aragonite skeleton once in their evolution, the suite of proteins involved in skeletogenesis is different for different coral species. This led to the conclusion that the organic portion of their skeleton can undergo rapid evolutionary changes by independently evolving new biomineralization-related proteins.

View Article and Find Full Text PDF

Aquatic invertebrates are a major source of biomaterials and bioactive natural products that can find applications as pharmaceutics, nutraceutics, cosmetics, antibiotics, antifouling products and biomaterials. Symbiotic microorganisms are often the real producers of many secondary metabolites initially isolated from marine invertebrates; however, a certain number of them are actually synthesized by the macro-organisms. In this review, we analysed the literature of the years 2010-2019 on natural products (bioactive molecules and biomaterials) from the main phyla of marine invertebrates explored so far, including sponges, cnidarians, molluscs, echinoderms and ascidians, and present relevant examples of natural products of interest to public and private stakeholders.

View Article and Find Full Text PDF

Stony corals are among the most important calcifiers in the marine ecosystem as they form the coral reefs. Coral reefs have huge ecological importance as they constitute the most diverse marine ecosystem, providing a home to roughly a quarter of all marine species. In recent years, many studies have shed light on the mechanisms underlying the biomineralization processes in corals, as characterizing the calicoblast cell layer and genes involved in the formation of the calcium carbonate skeleton.

View Article and Find Full Text PDF

Calcium carbonate (CaCO) biomineralizing organisms have played major roles in the history of life and the global carbon cycle during the past 541 Ma. Both marine diversification and mass extinctions reflect physiological responses to environmental changes through time. An integrated understanding of carbonate biomineralization is necessary to illuminate this evolutionary record and to understand how modern organisms will respond to 21st century global change.

View Article and Find Full Text PDF

The mature skeletons of hard corals, termed stony or scleractinian corals, are made of aragonite (CaCO). During their formation, particles attaching to the skeleton's growing surface are calcium carbonate, transiently amorphous. Here we show that amorphous particles are observed frequently and reproducibly just outside the skeleton, where a calicoblastic cell layer envelops and deposits the forming skeleton.

View Article and Find Full Text PDF

Background: Maternal mRNA provisioning of oocytes regulates early embryogenesis. Maternal transcripts are degraded as zygotic genome activation (ZGA) intensifies, a phenomenon known as the maternal-to-zygotic transition (MZT). Here, we examine gene expression over nine developmental stages in the Pacific rice coral, Montipora capitata, from eggs and embryos at 1, 4, 9, 14, 22, and 36 h-post-fertilization (hpf), as well as swimming larvae (9d), and adult colonies.

View Article and Find Full Text PDF

Stony coral exoskeletons build the foundation for the most biologically diverse marine ecosystems on Earth, coral reefs, which face major threats due to many anthropogenic-related stressors. Therefore, understanding coral biomineralization mechanisms is crucial for coral reef management in the coming decades and for using coral skeletons in geochemical studies. This study combines in-vivo imaging with cryo-electron microscopy and cryo-elemental mapping to gain novel insights into the biological microenvironment and the ion pathways that facilitate biomineralization in primary polyps of the stony coral Stylophora pistillata.

View Article and Find Full Text PDF

Globally, species are migrating in an attempt to track optimal isotherms as climate change increasingly warms existing habitats. Stony corals are severely threatened by anthropogenic warming, which has resulted in repeated mass bleaching and mortality events. Since corals are sessile as adults and with a relatively old age of sexual maturity, they are slow to latitudinally migrate, but corals may also migrate vertically to deeper, cooler reefs.

View Article and Find Full Text PDF

Soft corals (Cnidaria, Anthozoa, Octocorallia, Alcyonacea) produce internal sclerites of calcium carbonate previously shown to be composed of calcite, the most stable calcium carbonate polymorph. Here we apply multiple imaging and physical chemistry analyses to extracted and in-vivo sclerites of the abundant Red Sea soft coral, Ovabunda macrospiculata, to detail their mineralogy. We show that this species' sclerites are comprised predominantly of the less stable calcium carbonate polymorph vaterite (> 95%), with much smaller components of aragonite and calcite.

View Article and Find Full Text PDF

Despite their simple body plan, stony corals (order Scleractinia, phylum Cnidaria) can produce massive and complex exoskeletal structures in shallow, tropical and subtropical regions of Earth's oceans. The species-specific macromorphologies of their aragonite skeletons suggest a highly coordinated biomineralization process that is rooted in their genomes, and which has persisted across major climatic shifts over the past 400 + million years. The mechanisms by which stony corals produce their skeletons has been the subject of interest for at least the last 160 years, and the pace of understanding the process has increased dramatically in the past decade since the sequencing of the first coral genome in 2011.

View Article and Find Full Text PDF

The integrity of coral reefs worldwide is jeopardized by ocean acidification (OA). Most studies conducted so far have focused on the vulnerability to OA of corals inhabiting shallow reefs while nothing is currently known about the response of mesophotic scleractinian corals. In this study, we assessed the susceptibility to OA of corals, together with their algal partners, inhabiting a wide depth range.

View Article and Find Full Text PDF