Publications by authors named "Tali Gidalevitz"

Article Synopsis
  • * Mice with a C148S variant of IRE1α showed improved motor function and reduced microglial activation despite sustained IRE1α activity, indicating that a stronger activation can produce positive outcomes under certain circumstances.
  • * The findings highlight the complex role of IRE1α in neurological contexts, suggesting that the impact of ER stress sensors depends on specific cell types and conditions, emphasizing the need for further research to clarify their functions in neurological
View Article and Find Full Text PDF

splicing and regulated IRE1-dependent RNA decay (RIDD) are two RNase activities of the ER stress sensor IRE1. While splicing has important roles in stress responses and animal physiology, the physiological role(s) of RIDD remain enigmatic. Genetic evidence in connects XBP1-independent IRE1 activity to organismal stress adaptation, but whether this is via RIDD, and what are the targets is yet unknown.

View Article and Find Full Text PDF

Activation of the ER stress sensor IRE1α contributes to neuronal development and is known to induce neuronal remodeling and . On the other hand, excessive IRE1 activity is often detrimental and may contribute to neurodegeneration. To determine the consequences of increased activation of IRE1α, we used a mouse model expressing a C148S variant of IRE1α with increased and sustained activation.

View Article and Find Full Text PDF

To explore the role of the small heat shock protein beta 1 (HspB1, also known as Hsp25 in rodents and Hsp27 in humans) in longevity, we created a Caenorhabiditis elegans model with a high level of ubiquitous expression of the naked mole-rat HspB1 protein. The worms showed increased life span under multiple conditions and also increased resistance to heat stress. RNAi experiments suggest that HspB1-induced life extension is dependent on the transcription factors skn-1 (Nrf2) and hsf-1 (Hsf1).

View Article and Find Full Text PDF

The high rate of antibody production places considerable metabolic and folding stress on plasma cells (PC). Not surprisingly, they rely on the unfolded protein response (UPR), a universal signaling, and transcriptional network that monitors the health of the secretory pathway and mounts cellular responses to stress. Typically, the UPR utilizes three distinct stress sensors in the ER membrane, each regulating a subset of targets to re-establish homeostasis.

View Article and Find Full Text PDF

The unfolded protein response plays an evolutionarily conserved role in homeostasis, and its dysregulation often leads to human disease, including diabetes and cancer. IRE1α is a major transducer that conveys endoplasmic reticulum stress via biochemical signals, yet major gaps persist in our understanding of how the detection of stress is converted to one of several molecular outcomes. It is known that, upon sensing unfolded proteins via its endoplasmic reticulum luminal domain, IRE1α dimerizes and then oligomerizes (often visualized as clustering).

View Article and Find Full Text PDF

Differentiation of secretory cells leads to sharp increases in protein synthesis, challenging endoplasmic reticulum (ER) proteostasis. Anticipatory activation of the unfolded protein response (UPR) prepares cells for the onset of secretory function by expanding the ER size and folding capacity. How cells ensure that the repertoire of induced chaperones matches their postdifferentiation folding needs is not well understood.

View Article and Find Full Text PDF

Genetic instability of the mitochondrial genome (mtDNA) plays an important role in human aging and disease. Thus far, it has proven difficult to develop successful treatment strategies for diseases that are caused by mtDNA instability. To address this issue, we developed a model of mtDNA disease in the nematode C.

View Article and Find Full Text PDF

Misfolded proteins in transgenic models of conformational diseases interfere with proteostasis machinery and compromise the function of many structurally and functionally unrelated metastable proteins. This collateral damage to cellular proteins has been termed 'bystander' mechanism. How a single misfolded protein overwhelms the proteostasis, and how broadly-expressed mutant proteins cause cell type-selective phenotypes in disease are open questions.

View Article and Find Full Text PDF

Because aging is a multifactorial, pleiotropic process where many interacting mechanisms contribute to the organismal decline, the candidate gene approach rarely provides a clear message. This chapter discusses some of the inherent complexity, focusing on aspects that impinge upon protein homeostasis and maintain a healthy proteome. We discuss candidate genes that operate in these pathways, and compare their actions in invertebrates, mice and humans.

View Article and Find Full Text PDF

The response to endoplasmic reticulum (ER) stress relies on activation of unfolded protein response (UPR) sensors, and the outcome of the UPR depends on the duration and strength of signal. Here, we demonstrate a mechanism that attenuates the activity of the UPR sensor inositol-requiring enzyme 1α (IRE1α). A resident ER protein disulfide isomerase, PDIA6, limits the duration of IRE1α activity by direct binding to cysteine 148 in the lumenal domain of the sensor, which is oxidized when IRE1 is activated.

View Article and Find Full Text PDF

Background: Monogenic gain-of-function protein aggregation diseases, including Huntington's disease, exhibit substantial variability in age of onset, penetrance, and clinical symptoms, even between individuals with similar or identical mutations. This difference in phenotypic expression of proteotoxic mutations is proposed to be due, at least in part, to the variability in genetic background. To address this, we examined the role of natural variation in defining the susceptibility of genetically diverse individuals to protein aggregation and toxicity, using the Caenorhabditis elegans polyglutamine model.

View Article and Find Full Text PDF

The endoplasmic reticulum is a major compartment of protein biogenesis in the cell, dedicated to production of secretory, membrane and organelle proteins. The secretome has distinct structural and post-translational characteristics, since folding in the ER occurs in an environment that is distinct in terms of its ionic composition, dynamics and requirements for quality control. The folding machinery in the ER therefore includes chaperones and folding enzymes that introduce, monitor and react to disulfide bonds, glycans, and fluctuations of luminal calcium.

View Article and Find Full Text PDF

Organisms survive changes in the environment by altering their rates of metabolism, growth, and reproduction. At the same time, the system must ensure the stability and functionality of its macromolecules. Fluctuations in the environment are sensed by highly conserved stress responses and homeostatic mechanisms, and of these, the heat shock response (HSR) represents an essential response to acute and chronic proteotoxic damage.

View Article and Find Full Text PDF

The stability of the proteome is crucial to the health of the cell, and contributes significantly to the lifespan of the organism. Aging and many age-related diseases have in common the expression of misfolded and damaged proteins. The chronic expression of damaged proteins during disease can have devastating consequences on protein homeostasis (proteostasis), resulting in disruption ofnumerous biological processes.

View Article and Find Full Text PDF

The inherently error-prone nature of protein biosynthesis and turnover leads to a constant flux of destabilized proteins. Genetic mutations in conformational disease-associated proteins, as well as exposure to acute and chronic proteotoxic stresses, further increase the load of misfolded protein on the proteostasis network. During aging, this leads to enhanced instability of the proteome, failure to buffer destabilizing genetic mutations or polymorphisms, and cellular decline.

View Article and Find Full Text PDF

Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS) cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein.

View Article and Find Full Text PDF

Because only few of its client proteins are known, the physiological roles of the endoplasmic reticulum chaperone glucose-regulated protein 94 (GRP94) are poorly understood. Using targeted disruption of the murine GRP94 gene, we show that it has essential functions in embryonic development. grp94-/- embryos die on day 7 of gestation, fail to develop mesoderm, primitive streak, or proamniotic cavity.

View Article and Find Full Text PDF

GRP94 (glucose-regulated protein of 94 kDa) is a major luminal constituent of the endoplasmic reticulum with known high capacity for calcium in vivo and a peptide-binding activity in vitro. In the present study, we show that Ca2+ regulates the ability of GRP94 to bind peptides. This effect is due to a Ca2+-binding site located in the charged linker domain of GRP94, which, when occupied, enhances the association of peptides with the peptide-binding site in the N-terminal domain of the protein.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by an expanded polyglutamine tract in the huntingtin protein. Mitochondrial dysfunction and free radical damage occur in both R6/2 mice and HD patient brains and might play a role in disease pathogenesis. In cell culture systems, heat-shock protein 27 (Hsp27), a small molecular chaperone, suppresses mutant huntingtin-induced reactive oxygen species formation and cell death.

View Article and Find Full Text PDF

Numerous human diseases are associated with the chronic expression of misfolded and aggregation-prone proteins. The expansion of polyglutamine residues in unrelated proteins is associated with the early onset of neurodegenerative disease. To understand how the presence of misfolded proteins leads to cellular dysfunction, we employed Caenorhabditis elegans polyglutamine aggregation models.

View Article and Find Full Text PDF

Because the stress protein GRP94 can augment presentation of peptides to T cells, it is important to define how it, as well as all other HSP90 family members, binds peptides. Having previously shown that the N-terminal half of GRP94 can account for the peptide binding activity of the full-length protein, we now locate this binding site by testing predictions of a molecular docking model. The best predicted site was on the opposite face of the beta sheet from the pan-HSP90 radicicol-binding pocket, in close proximity to a deep hydrophobic pocket.

View Article and Find Full Text PDF

GRP94 is a molecular chaperone that carries immunologically relevant peptides from cell to cell, transferring them to major histocompatibility proteins for presentation to T cells. Here we examine the binding of several peptides to recombinant GRP94 and study the regulation and site of peptide binding. We show that GRP94 contains a peptide-binding site in its N-terminal 355 amino acids.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiont4jllhvinp5r2e4q03p0uft0j50p3b96): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once