Successful immunotherapy relies on triggering complex responses involving T cell dynamics in tumors and the periphery. Characterizing these responses remains challenging using static human single-cell atlases or mouse models. To address this, we developed a framework for in vivo tracking of tumor-specific CD8 T cells over time and at single-cell resolution.
View Article and Find Full Text PDFFDA-approved anti-PD-L1 monoclonal antibodies (mAbs) bear the IgG1 isotype, whose scaffolds are either wild-type (e.g., avelumab) or Fc-mutated and lacking Fcγ receptor (FcγR) engagement (e.
View Article and Find Full Text PDFTherapeutic use of agonistic anti-CD40 antibodies is a potentially powerful approach for activation of the immune response to eradicate tumors. However, the translation of this approach to clinical practice has been substantially restricted due to the severe dose-limiting toxicities observed in multiple clinical trials. Here, we demonstrate that conventional type 1 dendritic cells are essential for triggering antitumor immunity but not the toxicity of CD40 agonists, while macrophages, platelets and monocytes lead to toxic events.
View Article and Find Full Text PDFMessenger RNA-based vaccines against COVID-19 induce a robust anti-SARS-CoV-2 antibody response with potent viral neutralization activity. Antibody effector functions are determined by their constant region subclasses and by their glycosylation patterns, but their role in vaccine efficacy is unclear. Moreover, whether vaccination induces antibodies similar to those in patients with COVID-19 remains unknown.
View Article and Find Full Text PDFThe COVID-19 pandemic and the fast global spread of the disease resulted in unprecedented decline in world trade and travel. A critical priority is, therefore, to quickly develop serological diagnostic capacity and identify individuals with past exposure to SARS-CoV-2. In this study serum samples obtained from 309 persons infected by SARS-CoV-2 and 324 of healthy, uninfected individuals as well as serum from 7 COVID-19 patients with 4-7 samples each ranging between 1-92 days post first positive PCR were tested by an "in house" ELISA which detects IgM, IgA and IgG antibodies against the receptor binding domain (RBD) of SARS-CoV-2.
View Article and Find Full Text PDFTo identify the mechanisms relevant for the therapeutic effect of glatiramer acetate (GA), we studied T- and B- regulatory cells as well as GM-CSF expression in mice recovered from experimental autoimmune encephalomyelitis (EAE). Selective depletion of Tregs reduced but did not eliminate the ability of GA to ameliorate EAE, indicating a role for additional immune-subsets. The prevalence of Bregs in the periphery and the CNS of EAE-mice increased following GA-treatment.
View Article and Find Full Text PDFPatchy infiltration of tumors by cytotoxic T cells (CTLs) predicts poorer prognosis for cancer patients. The factors limiting intratumoral CTL dissemination, though, are poorly understood. To study CTL dissemination in tumors, we histologically examined human melanoma samples and used mice to image B16-OVA tumors infiltrated by OT-I CTLs using intravital two-photon microscopy.
View Article and Find Full Text PDFThe bone marrow hosts NK cells whose distribution, motility and response to systemic immune challenge are poorly understood. At steady state, two-photon microscopy of the bone marrow in Ncr1 mice captured motile NK cells interacting with dendritic cells. NK cells expressed markers and effector molecules of mature cells.
View Article and Find Full Text PDFRepair of injured lungs represents a longstanding therapeutic challenge. We recently demonstrated that human and mouse embryonic lung tissue from the canalicular stage of development are enriched with lung progenitors, and that a single cell suspension of canalicular lungs can be used for transplantation, provided that lung progenitor niches in the recipient mice are vacated by strategies similar to those used in bone marrow transplantation. Considering the ethical limitations associated with the use of fetal cells, we investigated here whether adult lungs could offer an alternative source of lung progenitors for transplantation.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTLs) used in immunotherapy are typically cultured under atmospheric O pressure but encounter hypoxic conditions inside tumors. Activating CTLs under hypoxic conditions has been shown to improve their cytotoxicity in vitro, but the mechanism employed and the implications for immunotherapy remain unknown. We activated and cultured OT-I CD8 T cells at either 1% or 20% O.
View Article and Find Full Text PDFAntigen (Ag) specific activation of naïve T cells by migrating dendritic cells (DCs) is a highly efficient process, although the chances for their colocalization in lymph nodes (LNs) appear low. Ag presentation may be delegated from Ag-donor DCs to the abundant resident DCs, but the routes of Ag transfer and how it facilitates T-cell activation remain unclear. We visualized CD8 T cell-DC interactions to study the sites, routes, and cells mediating Ag transfer in mice.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2015
Aire (autoimmune regulator) has a key role in the establishment of tolerance to autoantigens. Aire(-/-) mice present decreased thymic expression of AChR, significantly lower frequencies of regulatory T (T(reg)) cells, and higher expression of Th17 markers, compared to controls. We therefore predicted that Aire(-/-) mice would be more susceptible to induction of experimental autoimmune myasthenia gravis (EAMG).
View Article and Find Full Text PDFEstablishment of tolerance in myasthenia gravis (MG) involves regulatory T (T(reg)) cells. Experimental autoimmune MG (EAMG) in rats is a suitable model for assessing the contribution of T(reg) cells to the immunopathology of the disease and for testing novel T(reg) cell-based treatment modalities. We have studied two immunotherapeutic approaches for targeting of T(reg) cells in myasthenia.
View Article and Find Full Text PDFThe autoimmune regulator (Aire) is involved in the prevention of autoimmunity by promoting thymic expression of tissue restricted antigens which leads to elimination of self-reactive T cells. We found that Aire knockout (KO) mice as well as mouse strains that are susceptible to experimental autoimmune myasthenia gravis (EAMG) have lower thymic expression of acetylcholine receptor (AChR- the main autoantigen in MG), compared to wild type (WT) mice and EAMG-resistant mouse strains, respectively. We demonstrated that Aire KO mice have a significant and reproducible lower frequency of CD4+Foxp3+ cells and a higher expression of Th17 markers in their thymus, compared to wild type (WT) mice.
View Article and Find Full Text PDFWe have previously shown that several phosphodiesterase (PDE) subtypes are up-regulated in muscles and lymph node cells (LNC) of rats with experimental autoimmune myasthenia gravis (EAMG). In the present study we investigated PDE expression during the course of EAMG and experimental allergic encephalomyelitis (EAE) and found that the up-regulated expression of selected PDE subtypes in both experimental models is correlated with disease severity. In EAMG, PDE expression is correlated also with muscle damage.
View Article and Find Full Text PDFWe have previously demonstrated that the chemokine IFN-gamma inducible protein 10 (IP-10) and its receptor CXCR3, are overexpressed in myasthenia gravis (MG) and its animal model experimental autoimmune MG (EAMG). We now studied the potential of modulating rat EAMG by interference in CXCR3/IP-10 signaling. Two different approaches were used: 1) blocking IP-10 by IP-10-specific antibodies and 2) inhibiting the CXCR3 chemokine receptor by a CXCR3 antagonist.
View Article and Find Full Text PDFMyasthenia gravis (MG) is frequently treated by corticosteroids such as methylprednisolone. However, continuous treatment with steroids often results in adverse effects. In the present study we evaluated the therapeutic potential of a combination of suboptimal doses of methylprednisolone (Solumedrol) and Pentoxifylline (PTX), a general phosphodiesterase (PDE) inhibitor, in rat experimental autoimmune MG (EAMG).
View Article and Find Full Text PDFIntravenous immunoglobulin (IVIG) administration has been beneficially used for the treatment of a variety of autoimmune diseases including myasthenia gravis (MG). We have demonstrated that IVIG administration in experimental autoimmune MG (EAMG) results in suppression of disease that is accompanied by decreased Th1 cell and B cell proliferation. Chromatography of pooled human immunoglobulins (IVIG) on immobilized IgG, isolated from rats with EAMG or from MG patients, results in a depletion of the suppressive activity of the IVIG.
View Article and Find Full Text PDFBackground: [corrected] Intravenous immunoglobulin administration has been beneficially used for the treatment of a variety of autoimmune diseases including myasthenia gravis, although its mode of action and active components have not yet been fully identified.
Objectives: To isolate from IVIg a disease-specific fraction involved in the therapeutic activity in myasthenia and to identify its properties and function.
Results: IVIg administration in experimental autoimmune MG results in suppression of disease that is accompanied by decreased Th1 cell and B cell proliferation.
Naturally occurring CD4(+)CD25(+) regulatory T (Treg) cells are key players in immune tolerance and have therefore been suggested as potential therapeutic tools for autoimmune diseases. In myasthenia gravis (MG), reduced numbers or functionally impaired Treg cells have been reported. We have observed that PBL from myasthenic rats contain decreased numbers of CD4(+)CD25(high)Foxp3(+) cells as compared with PBL from healthy controls, and we have tested whether Treg cells from healthy donors can suppress experimental autoimmune MG in rats.
View Article and Find Full Text PDFIntravenous immunoglobulin (IVIG) treatment is beneficially used in autoimmune disorders including myasthenia gravis (MG) although its mode of action and active components are still not fully identified. In an attempt to isolate from IVIG a disease-specific suppressive fraction, IVIG was passed on columns of IgG from rats with experimental autoimmune MG (EAMG) or from MG patients. These chromatographies resulted in depletion of the suppressive activity of IVIG on rat EAMG whereas the minute amounts of IgG fractions eluted from the EAMG- or MG-specific columns retained the immunosuppressive activity of IVIG.
View Article and Find Full Text PDFIntravenous immunoglobulin (IVIG) administration has been beneficially used for the treatment of a variety of autoimmune diseases including myasthenia gravis (MG). We have demonstrated that IVIG administration in experimental autoimmune MG (EAMG) results in suppression of disease that is accompanied by decreased Th1 cell and B cell proliferation. Chromatography of pooled human immunoglobulins (IVIGs) on immobilized IgG, isolated from rats with EAMG, results in a complete depletion of the suppressive activity of the IVIG.
View Article and Find Full Text PDFDNA microarray technology was used to identify new potential drug targets for myasthenia gravis (MG), to delineate genes involved in the pathogenesis of the disease and to possibly target their protein products for immunotherapy. In this study we compared the gene expression in lymph node cells (LNC) and muscles of rats with experimental autoimmune MG (EAMG) to those of control, healthy rats. Of the genes that were found to be deregulated in EAMG, we chose to elaborate on two gene systems: (a) The chemokine IFN-gamma-inducible protein 10 (IP-10, CXCL10), and its receptor (CXCR3) and (b) phosphodiesterases.
View Article and Find Full Text PDF