Publications by authors named "Talgat Yakupov"

Biomechanical properties of mammalian bones, such as strength, toughness, and plasticity, are essential for understanding how microscopic-scale mechanical features can link to macroscale bones' strength and fracture resistance. We employ Brillouin light scattering (BLS) microspectroscopy for local assessment of elastic properties of bones under compression and the efficacy of the tissue engineering approach based on heparin-conjugated fibrin (HCF) hydrogels, bone morphogenic proteins, and osteogenic stem cells in the regeneration of the bone tissues. BLS is noninvasive and label-free modality for probing viscoelastic properties of tissues that can give information on structure-function properties of normal and pathological tissues.

View Article and Find Full Text PDF

Brillouin spectroscopy and imaging has experienced a renaissance in recent years seeing vast improvements in methodology and increasing number of applications. With this resurgence has come the development of new spontaneous Brillouin instruments that often tout superior performance compared to established conventional systems such as tandem Fabry-Perot interferometers (TFPI). The performance of these new systems cannot always be thoroughly examined beyond the scope of the intended application, as applications often take precedence in reports.

View Article and Find Full Text PDF