Lava fountains are a common manifestation of basaltic volcanism. While magma degassing plays a clear key role in their generation, the controls on their duration and intermittency are only partially understood, not least due to the challenges of measuring the most abundant gases, HO and CO. The 2021 Fagradalsfjall eruption in Iceland included a six-week episode of uncommonly periodic lava fountaining, featuring ~ 100-400 m high fountains lasting a few minutes followed by repose intervals of comparable duration.
View Article and Find Full Text PDFUnlabelled: The eruptions of Eyjafjallajökull volcano in 2010 (including its initial effusive phase at Fimmvörðuháls and its later explosive phase from the central volcano) and Bárðarbunga volcano in 2014-2015 (at Holuhraun) were widely reported. Here, we report on complementary, interdisciplinary observations made of the eruptive gases and lavas that shed light on the processes and atmospheric impacts of the eruptions, and afford an intercomparison of contrasting eruptive styles and hazards. We find that (i) consistent with other authors, there are substantial differences in the gas composition between the eruptions; namely that the deeper stored Eyjafjallajökull magmas led to greater enrichment in Cl relative to S; (ii) lava field SO degassing was measured to be 5-20% of the total emissions during Holuhraun, and the lava emissions were enriched in Cl at both fissure eruptions-particularly Fimmvörðuháls; and (iii) BrO is produced in Icelandic plumes in spite of the low UV levels.
View Article and Find Full Text PDFThe proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater.
View Article and Find Full Text PDFWe present a synthesis of diverse observations of the first recorded eruption of Nabro volcano, Eritrea, which began on 12 June 2011. While no monitoring of the volcano was in effect at the time, it has been possible to reconstruct the nature and evolution of the eruption through analysis of regional seismological and infrasound data and satellite remote sensing data, supplemented by petrological analysis of erupted products and brief field surveys. The event is notable for the comparative rarity of recorded historical eruptions in the region and of caldera systems in general, for the prodigious quantity of SO emitted into the atmosphere and the significant human impacts that ensued notwithstanding the low population density of the Afar region.
View Article and Find Full Text PDF