Importance: Emerging evidence suggests that severe acute respiratory syndrome, COVID-19, negatively impacts brain health, with clinical magnetic resonance imaging (MRI) showing a wide range of neurologic manifestations but no consistent pattern. Compared with 3 Tesla (3T) MRI, 7 Tesla (7T) MRI can detect more subtle injuries, including hippocampal subfield volume differences and additional standard biomarkers such as white matter lesions. 7T MRI could help with the interpretation of the various persistent post-acute and distal onset sequelae of COVID-19 infection.
View Article and Find Full Text PDFThe rapid advancements in magnetic resonance imaging (MRI) technology have precipitated a new paradigm wherein cross-modality data translation across diverse imaging platforms, field strengths, and different sites is increasingly challenging. This issue is particularly accentuated when transitioning from 3 Tesla (3T) to 7 Tesla (7T) MRI systems. This study proposes a novel solution to these challenges using generative adversarial networks (GANs)-specifically, the CycleGAN architecture-to create synthetic 7T images from 3T data.
View Article and Find Full Text PDFInquiries into properties of brain structure and function have progressed due to developments in magnetic resonance imaging (MRI). To sustain progress in investigating and quantifying neuroanatomical details in vivo, the reliability and validity of brain measurements are paramount. Quality control (QC) is a set of procedures for mitigating errors and ensuring the validity and reliability of brain measurements.
View Article and Find Full Text PDFPurpose: To investigate microstructural alterations induced by perfusion fixation in brain tissues using advanced diffusion MRI techniques and estimate their potential impact on the application of ex vivo models to in vivo microstructure.
Methods: We used oscillating gradient spin echo (OGSE) and b-tensor encoding diffusion MRI to examine in vivo and ex vivo microstructural differences in the marmoset brain. OGSE was used to shorten effective diffusion times, whereas b-tensor encoding allowed for the differentiation of isotropic and anisotropic kurtosis.
Numerous research groups worldwide have focused on postmortem imaging to bridge the resolution gap between clinical neuroimaging and neuropathology data. We developed a standardized protocol for brain embedding, imaging, and processing, facilitating alignment between antemortem MRI, postmortem MRI, and pathology to observe brain atrophy and structural damage progression over time. Using 7T postmortem ex vivo MRI, we explore the potential correlation of amygdala and hippocampal atrophy with neuropathological burden in both Down syndrome (DS) and Alzheimer's disease (AD) cohorts.
View Article and Find Full Text PDFThe development of innovative non-invasive neuroimaging methods and biomarkers is critical for studying brain disease. Imaging of cerebrospinal fluid (CSF) pulsatility may inform the brain fluid dynamics involved in clearance of cerebral metabolic waste. In this work, we developed a methodology to characterize the frequency and spatial localization of whole brain CSF pulsations in humans.
View Article and Find Full Text PDFBackground: High-precision neurosurgical targeting in nonhuman primates (NHPs) often requires presurgical anatomical mapping with noninvasive neuroimaging techniques (MRI, CT, PET), allowing for translation of individual anatomical coordinates to surgical stereotaxic apparatus. Given the varied tissue contrasts that these imaging techniques produce, precise alignment of imaging-based coordinates to surgical apparatus can be cumbersome. MRI-compatible stereotaxis with radiopaque fiducial markers offer a straight-forward and reliable solution, but existing commercial options do not fit in conformal head coils that maximize imaging quality.
View Article and Find Full Text PDFDevelopment of innovative non-invasive neuroimaging methods and biomarkers are critical for studying brain disease. In this work, we have developed a methodology to characterize the frequency responses and spatial localization of oscillations and movements of cerebrospinal fluid (CSF) flow in the human brain. Using 7 Tesla human MRI and ultrafast echo-planar imaging (EPI), images were obtained to capture CSF oscillations and movements.
View Article and Find Full Text PDFThe paraventricular nucleus of the hypothalamus (PVN) is uniquely capable of proximal control over autonomic and neuroendocrine stress responses, and the bed nucleus of the stria terminalis (BNST) directly modulates PVN function, as well as playing an important role in stress control itself. The dorsal BNST (dBNST) is predominantly preautonomic, while the ventral BNST (vBNST) is predominantly viscerosensory, receiving dense noradrenergic signaling. Distinguishing the dBNST and vBNST, along with the PVN, may facilitate our understanding of dynamic interactions among these regions.
View Article and Find Full Text PDFThe objective of this study is to evaluate the efficacy of deep learning (DL) techniques in improving the quality of diffusion MRI (dMRI) data in clinical applications. The study aims to determine whether the use of artificial intelligence (AI) methods in medical images may result in the loss of critical clinical information and/or the appearance of false information. To assess this, the focus was on the angular resolution of dMRI and a clinical trial was conducted on migraine, specifically between episodic and chronic migraine patients.
View Article and Find Full Text PDFStructural covariance network (SCN) studies on first-episode antipsychotic-naïve psychosis (FEAP) have examined less granular parcellations on one morphometric feature reporting lower network resilience among other findings. We examined SCNs of volume, cortical thickness, and surface area using the Human Connectome Project atlas-based parcellation (n = 358 regions) from 79 FEAP and 68 controls to comprehensively characterize the networks using a descriptive and perturbational network neuroscience approach. Using graph theoretical methods, we examined network integration, segregation, centrality, community structure, and hub distribution across the small-worldness threshold range and correlated them with psychopathology severity.
View Article and Find Full Text PDFPurpose: The expanded encoding model incorporates spatially- and time-varying field perturbations for correction during reconstruction. To date, these reconstructions have used the conjugate gradient method with early stopping used as implicit regularization. However, this approach is likely suboptimal for low-SNR cases like diffusion or high-resolution MRI.
View Article and Find Full Text PDFWater diffusion anisotropy MRI is sensitive to microstructural changes in the brain that are hallmarks of various neurological conditions. However, conventional metrics like fractional anisotropy are confounded by neuron fiber orientation dispersion, and the relatively low resolution of diffusion-weighted MRI gives rise to significant free water partial volume effects in many brain regions that are adjacent to cerebrospinal fluid. Microscopic fractional anisotropy is a recent metric that can report water diffusion anisotropy independent of neuron fiber orientation dispersion but is still susceptible to free water contamination.
View Article and Find Full Text PDFJ Eng Sci Med Diagn Ther
May 2022
As machine learning is used to make strides in medical diagnostics, few methods provide heuristics from which human doctors can learn directly. This work introduces a method for leveraging human observable structures, such as macroscale vascular formations, for producing assessments of medical conditions with relatively few training cases, and uncovering patterns that are potential diagnostic aids. The approach draws on shape grammars, a rule-based technique, pioneered in design and architecture, and accelerated through a recursive subgraph mining algorithm.
View Article and Find Full Text PDFMagnetic resonance (MR) scans are routine clinical procedures for monitoring people with multiple sclerosis (PwMS). Patient discomfort, timely scheduling, and financial burden motivate the need to accelerate MR scan time. We examined the clinical application of a deep learning (DL) model in restoring the image quality of accelerated routine clinical brain MR scans for PwMS.
View Article and Find Full Text PDFSickle cell disease (SCD) is an inherited hemoglobinopathy that causes organ dysfunction, including cerebral vasculopathy and neurological complications. Hippocampal segmentation with newer and advanced 7 Tesla (7T) MRI protocols has revealed atrophy in specific subregions in other neurodegenerative and neuroinflammatory diseases, however, there is limited evidence of hippocampal involvement in SCD. Thus, we explored whether SCD may be also associated with abnormalities in hippocampal subregions.
View Article and Find Full Text PDFRecently cleared by the FDA, 7 Tesla (7 T) MRI is a rapidly growing technology that can provide higher resolution and enhanced contrast in human MRI images. However, the increased operational frequency (~ 297 MHz) hinders its full potential since it causes inhomogeneities in the images and increases the power deposition in the tissues. This work describes the optimization of an innovative radiofrequency (RF) head coil coupled design, named Tic Tac Toe, currently used in large scale human MRI scanning at 7 T; to date, this device was used in more than 1,300 neuro 7 T MRI scans.
View Article and Find Full Text PDFElectromagnetic simulations are an important tool for the safety assessment of RF coils. They are a useful resource for MRI RF coil designers, especially when complemented with experimental measurements and testing using physical phantoms. Regular-shaped (spherical/cylindrical) homogeneous phantoms are the MRI standard for RF testing but are somewhat inaccurate when compared with anthropomorphic anatomies, especially at high frequencies.
View Article and Find Full Text PDFObjective: We sought to determine whether the aspects of white matter connectivity implicated in major depression also relate to mild depressive symptoms in family dementia caregivers (dCGs).
Methods: Forty-one dCGs (average age=69 years, standard deviation=6.4) underwent a 7 Tesla 64-direction (12-minute) diffusion-weighted imaging sequence.
Cerebral small vessel disease is associated with late-life depression, cognitive impairment, executive dysfunction, distress, and loss of life for older adults. Late-life depression is becoming a substantial public health burden, and a considerable number of older adults presenting to primary care have significant clinical depression. Even though white matter hyperintensities are linked with small vessel disease, white matter hyperintensities are nonspecific to small vessel disease and can co-occur with other brain diseases.
View Article and Find Full Text PDFEinstein (Sao Paulo)
March 2019
Objective: To develop and test a beat-to-beat blood pressure monitoring device during coronary angiography, and compare it with invasive blood pressure monitoring.
Methods: Twenty-eight patients with an indication for hemodynamic study were selected for this investigation, and kept in supine position. Before starting the coronary angiography, they were instructed about the use of the left radial bracelet for beat-to-beat blood pressure monitoring.