Publications by authors named "Talent J"

Recent advances in detector technology make it possible to achieve single molecule detection (SMD) in a cell. SMD avoids complications associated with averaging signals from large assemblies and with diluting and disorganizing proteins. However, it requires that cells be illuminated with an intense laser beam, which causes photobleaching and cell damage.

View Article and Find Full Text PDF

Studying single molecules in a cell has the essential advantage that kinetic information is not averaged out. However, since fluorescence is faint, such studies require that the sample be illuminated with the intense light beam. This causes photodamage of labeled proteins and rapid photobleaching of the fluorophores.

View Article and Find Full Text PDF

During interaction of actin with myosin, cross-bridges impart mechanical impulses to thin filaments resulting in rotations of actin monomers. Impulses are delivered on the average every tc seconds. A cross-bridge spends a fraction of this time (ts) strongly attached to actin, during which it generates force.

View Article and Find Full Text PDF

Recently it has become possible to study single protein molecules in a cell. However, such experiments are plagued by rapid photobleaching. We recently showed that the interaction of fluorophores with localized surface plasmon polaritons (LSPs) induced in the metallic nanoparticles led to a substantial reduction of photobleaching.

View Article and Find Full Text PDF

Recently it has become possible to study interactions between proteins at the level of single molecules. This requires collecting data from an extremely small volume, small enough to contain one molecule-typically of the order of attoliters (10(-18) L). Collection of data from such a small volume with sufficiently high signal-to-noise ratio requires that the rate of photon detection per molecule be high.

View Article and Find Full Text PDF

Cyclic interactions of myosin and actin are responsible for contraction of muscle. It is not self-evident, however, that the mechanical cycle occurs during steady-state isometric contraction where no work is produced. Studying cross-bridge dynamics during isometric steady-state contraction requires an equilibrium time-resolved method (not involving application of a transient).

View Article and Find Full Text PDF

Coelacanths are well-known sarcopterygian (lobe-finned) fishes, which together with lungfishes are the closest extant relatives of land vertebrates (tetrapods). Coelacanths have both living representatives and a rich fossil record, but lack fossils older than the late Middle Devonian (385-390 Myr ago), conflicting with current phylogenies implying coelacanths diverged from other sarcopterygians in the earliest Devonian (410-415 Myr ago). Here, we report the discovery of a new coelacanth from the Early Devonian of Australia (407-409 Myr ago), which fills in the approximately 20 Myr 'ghost range' between previous coelacanth records and the predicted origin of the group.

View Article and Find Full Text PDF

Familial hypertrophic cardiomyopathy is a disease characterized by left ventricular and/or septal hypertrophy and myofibrillar disarray. It is caused by mutations in sarcomeric proteins, including the ventricular isoform of myosin regulatory light chain (RLC). The E22K mutation is located in the RLC Ca(2+)-binding site.

View Article and Find Full Text PDF

In order to measure the cycling of a few ( approximately 6) myosin heads in contracting skeletal muscle, myofibrils were illuminated by Total Internal Reflection and observed through a confocal aperture. Myosin heads rotated at a rate approximately equal to the ATPase rate, suggesting that bulk ATPase of a whole muscle reflects the cycle frequency of individual heads.

View Article and Find Full Text PDF

The ability to measure properties of a single cross-bridge in working muscle is important because it avoids averaging the signal from a large number of molecules and because it probes cross-bridges in their native crowded environment. Because the concentration of myosin in muscle is large, observing the kinetics of a single myosin molecule requires that the signal be collected from small volumes. The introduction of small observational volumes defined by diffraction-limited laser beams and confocal detection has made it possible to limit the observational volume to a femtoliter (10(-15) liter).

View Article and Find Full Text PDF

The rotation of myosin heads and actin were measured simultaneously with an indicator of the enzymatic activity of myosin. To minimize complications due to averaging of signals from many molecules, the signal was measured in a small population residing in a femtoliter volume of a muscle fiber. The onset of rotation was synchronized by a sudden release of caged ATP.

View Article and Find Full Text PDF

It is well documented that muscle contraction results from cyclic rotations of actin-bound myosin cross-bridges. The role of actin is hypothesized to be limited to accelerating phosphate release from myosin and to serving as a rigid substrate for cross-bridge rotations. To test this hypothesis, we have measured actin rotations during contraction of a skeletal muscle.

View Article and Find Full Text PDF

The oxidative modification of proteins has been shown to play a major role in a number of human diseases. However, the ability to identify specific proteins that are most susceptible to oxidative modifications is difficult. Separation of proteins using polyacrylamide gel electrophoresis (PAGE) offers the analytical potential for the recovery, amino acid sequencing, and identification of thousands of individual proteins from cells and tissues.

View Article and Find Full Text PDF

We have examined the effects of the beta-amyloid peptide (Abeta(25-35)) on fibroblasts derived from subjects with Alzheimer's disease (AD) and from age-matched controls. The peptide was significantly more cytotoxic to the AD-derived fibroblasts. The level of protein oxidation was also greater in the cells from AD subjects.

View Article and Find Full Text PDF

Oxidative damage to neuronal proteins appears to be central to the toxicity associated with a number of neuropathologies, including Alzheimer's disease. We have examined this by using oxidative stress to induce apoptosis in a mouse hippocampal neuronal cell line (HT-22). Oxidatively modified proteins were measured by high-resolution two-dimensional gel electrophoresis coupled with oxidation-specific immunostains.

View Article and Find Full Text PDF

The oxidative modification of proteins plays a major role in a number of human diseases including Alzheimer's disease (AD). Flavones in extracts of Scutellaria baicalensis (SbE) have been reported to have exceptional antioxidant properties. We examined the effects of SbE on neuronal cells exposed to oxidative stress.

View Article and Find Full Text PDF

The modification of proteins by reactive oxygen species is central to the pathology of Alzheimer's disease (AD). Previously, we have observed specific oxidized proteins in blood plasma of AD subjects [Biochem. Biophys.

View Article and Find Full Text PDF

Chemiluminescent probes offer highly sensitive quantitative analyses of proteins blotted from electrophoretic gels onto a supporting matrix (e.g. nitrocellulose or polyvinylidene difluoride).

View Article and Find Full Text PDF

The oxidative modification of proteins plays a major role in a number of human diseases, but identity of the specific proteins that are most susceptible to oxidation has posed a difficult problem. Protein carbonyls are increased after oxidative stress, and after derivatization with 2,4-dinitrophenyl hydrazine (DNP) they can be detected by various analytical and immunological methods. Although high resolution two-dimensional electrophoresis (2-DE) can resolve virtually all proteins present in a cell or tissue it has been difficult to determine the oxidized proteins because the DNP-derivatization process alters the isoelectric points of proteins, and additional procedures must be utilized to remove reaction byproducts.

View Article and Find Full Text PDF

The early bactericidal activity (EBA) of an antituberculosis agent is the rate of decrease in viable colony-forming units (CFU) per milliliter of sputum during the first 2 d of treatment of patients with previously untreated smear-positive pulmonary tuberculosis. The objective of this open randomized study was to evaluate the EBA of the combination of amoxicillin 3 g and clavulanic acid 750 mg. Ten patients with a mean age of 34 y and a mean weight of 56 kg received amoxicillin/clavulanic acid and 5 patients with a mean age of 34 y and a mean weight of 57 kg received no drug.

View Article and Find Full Text PDF

Many patients with arthritis are using alternative modes of therapy, including nutritional supplements, to treat their arthritis. Most patients never tell their doctors that they are taking alternative medications, and few doctors even ask about such activities. Over-the-counter supplements are expensive and consume large amounts of patients' healthcare dollars.

View Article and Find Full Text PDF

The levels of oxidatively modified proteins were examined in blood from Alzheimer's disease (AD) patients, non-AD controls, and AD relatives. Oxidative modification was measured by reacting the protein carbonyls with 2,4-dinitrophenyl hydrazine (DNPH). The total oxidized proteins were determined by HPLC, while specific protein oxidation was assessed from Western blots of electrophoretic gels using antibody to the DNP derivatives.

View Article and Find Full Text PDF