Publications by authors named "Talen Chen"

m.3243A>G is the most common pathogenic mtDNA mutation. High energy-demanding organs, such as heart, are usually involved in mitochondria diseases.

View Article and Find Full Text PDF

Despite the tremendous success of combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection, the durability and persistence of latent reservoirs of HIV-infected cells in HIV-infected patients remain obstacles to achieving HIV cure. While technically challenging, the most direct means to eradicate latent reservoirs is to destroy the HIV provirus, thus ensuring that HIV virions are not produced while preserving resident cells. Transcription activator-like effector nucleases (TALEN)─a genome editing method with high DNA targeting efficiency─have been investigated as a potential gene therapy by disrupting the HIV-1 coreceptor CCR5 genes in HIV target cells or HIV proviral DNA in infected cells.

View Article and Find Full Text PDF

Background: The gene family of myelomatosis (MYC), serving as a transcription factor in the jasmonate (JA) signaling pathway, displays a significant level of conservation across diverse animal and plant species. Cotton is the most widely used plant for fiber production. Nevertheless, there is a paucity of literature reporting on the members of MYCs and how they respond to biotic stresses in cotton.

View Article and Find Full Text PDF

Increased activity of acid sphingomyelinase (ASMase) has been linked to diabetes and organ fibrosis. Nevertheless, the precise influence of ASMase on diabetic myocardial fibrosis and the corresponding molecular mechanisms remain elusive. In this study, we aim to elucidate whether ASMase contributes to diabetic myocardial fibrosis through the phosphorylation mediated by MAPK, thereby culminating in the development of diabetic cardiomyopathy (DCM).

View Article and Find Full Text PDF

The ability to address specific sequences within DNA is of tremendous interest in biotechnology and biomedicine. Various technologies have been established over the past few decades, such as nicking enzymes and methyltransferase-directed sequence-specific labeling, transcription activator-like effector nucleases (TALENs), the CRISPR-Cas9 system, and polyamides of heterocycles as sequence-specific DNA minor groove binders. Pyrrole-imidazole polyamides have been reported to recognize predetermined DNA sequences, and some successful attempts have demonstrated their potential in regulating gene expression.

View Article and Find Full Text PDF

Genome-wide CRISPR library screening technology is a gene function research tool developed based on the CRISPR/Cas9 gene-editing system. The clustered regularly interspaced short palindromic repeats/CRISPR-associated genes (CRISPR/Cas) system, considered the third generation of gene editing after zinc finger nucleases (ZFN) and transcription activator-like effector nucleases (TALEN), is widely used for screening various viral host factors. CRISPR libraries are classified into three main categories based on the different functions of Cas9 enzymes: CRISPR knockout (CRISPR KO) library screening, CRISPR transcriptional activation (CRISPRa) library screening, and CRISPR transcriptional interference (CRISPRi) library screening.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) are currently used to treat mutant cancers. Although PARPi sensitivity has been attributed to homologous recombination (HR) defects, other roles of HR factors have also been linked to response to PARPi, including replication fork protection. In this study, we investigated PARPi sensitivity in ovarian cancer patient-derived xenograft (PDX) models in relation to HR proficiency and replication fork protection.

View Article and Find Full Text PDF

Y box-binding protein 1 (Ybx1/ybx1) regulates gene expression through DNA/RNA binding. In zebrafish, Ybx1 is highly abundant in primary growth (PG) follicles in the ovary, but decreases precipitously as the follicles enter the secondary growth (SG). To understand Ybx1 function in folliculogenesis, we created a ybx1 mutant using TALEN and observed disrupted folliculogenesis during the previtellogenic (PV) to early vitellogenic (EV) transition of SG, resulting in underdeveloped ovaries and infertility.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed high-throughput assays to find compounds that correct severe misfolding of the pathogenic L444P-variant of GCase, screening over 10,000 compounds and identifying multiple stabilizers.
  • * The study demonstrated that a specific compound, NCGC326, not only improved GCase levels but also worked well in combination with other treatments, suggesting potential for enhanced therapeutic approaches.
View Article and Find Full Text PDF

We present a TALEN-based workflow to generate and maintain dual-edited (IL-15/TGFβR2) iPSCs that produce enhanced iPSC-derived natural killer (iNK) cells for cancer immunotherapy. It involves using a cell lineage promoter for knocking in (KI) gene(s) to minimize the potential effects of expression of any exogenous genes on iPSCs. As a proof-of-principle, we KI IL-15 under the endogenous B2M promoter and show that it results in high expression of the sIL-15 in iNK cells but minimal expression in iPSCs.

View Article and Find Full Text PDF

Cytoplasmic male sterility (CMS) is an agronomically significant trait that causes dysfunction in pollen and anther development. It is often observed during successive backcrossing between distantly related species. Here, we show that Asian japonica cultivars (Oryza sativa) exhibit CMS when the nucleus is replaced with that of the African rice Oryza glaberrima.

View Article and Find Full Text PDF

Rapid advances in biological knowledge and technological innovation have greatly advanced the fields of stem cell and gene therapies to combat a broad spectrum of neurologic disorders. Researchers are currently exploring a variety of stem cell types (e.g.

View Article and Find Full Text PDF

Glucocerebrosidase (GCase) is implicated in both a rare, monogenic disorder (Gaucher disease, GD) and a common, multifactorial condition (Parkinson's disease); hence, it is an urgent therapeutic target. To identify correctors of severe protein misfolding and trafficking obstruction manifested by the pathogenic L444P-variant of GCase, we developed a suite of quantitative, high-throughput, cell-based assays. First, we labeled GCase with a small pro-luminescent HiBiT peptide reporter tag, enabling quantitation of protein stabilization in cells while faithfully maintaining target biology.

View Article and Find Full Text PDF

β-Thalassemia is the world's number 1 single-gene genetic disorder and is characterized by suppressed or impaired production of β-pearl protein chains. This results in intramedullary destruction and premature lysis of red blood cells in peripheral blood. Among them, patients with transfusion-dependent β-thalassemia face the problem of long-term transfusion and iron chelation therapy, which leads to clinical complications and great economic stress.

View Article and Find Full Text PDF

Genetically engineered silkworms have been widely used to obtain silk with modified characteristics especially by introducing spider silk genes. However, these attempts are still challenging due to limitations in transformation strategies and difficulties in integration of the large DNA fragments. Here, we describe three different transformation strategies in genetically engineered silkworms, including transcription-activator-like effector nuclease (TALEN)-mediated fibroin light chain (FibL) fusion (BmFibL-F), TALEN-mediated FibH replacement (BmFibH-R), and transposon-mediated genetic transformation with the silk gland-specific fibroin heavy chain (FibH) promoter (BmFibH-T).

View Article and Find Full Text PDF

Syndactyly type V (SDTY5) is an autosomal dominant extremity malformation characterized by fusion of the fourth and fifth metacarpals. In the previous publication, we first identified a heterozygous missense mutation Q50R in homeobox domain (HD) of HOXD13 in a large Chinese family with SDTY5. In order to substantiate the pathogenicity of the variant and elucidate the underlying pathogenic mechanism causing limb malformation, transcription-activator-like effector nucleases (TALEN) was employed to generate a Hoxd13Q50R mutant mouse.

View Article and Find Full Text PDF

Synthetic biology has emerged as a powerful tool for engineering biological systems to produce valuable compounds, including pharmaceuticals and nutraceuticals. Microalgae, in particular, offer a promising platform for the production of bioactive compounds due to their high productivity, low land and water requirements, and ability to perform photosynthesis. Fucoxanthin, a carotenoid pigment found predominantly in brown seaweeds and certain microalgae, has gained significant attention in recent years due to its numerous health benefits, such as antioxidation, antitumor effect and precaution osteoporosis.

View Article and Find Full Text PDF

Mitochondria play important roles in angiogenesis. However, the mechanisms remain elusive. In this study, we found that mitochondrial ubiquinol-cytochrome c reductase complex assembly factor 3 (UQCC3) is a key regulator of angiogenesis.

View Article and Find Full Text PDF

Pathogenic mutations in , one of two major human isoforms, were responsible for most X-linked retinitis pigmentosa cases. Previous studies have shown that plays a critical role in ciliary protein transport. However, the precise mechanisms of disease triggered by mutations have yet to be clearly defined.

View Article and Find Full Text PDF

Precise structural control has attracted tremendous interest in pursuit of the tailoring of physical properties. Here, this work shows that through strong ligand-mediated interfacial energy control, Au-Cu O dumbbell structures where both the Au nanorod (AuNR) and the partially encapsulating Cu O domains are highly crystalline. The synthetic advance allows physical separation of the Au and Cu O domains, in addition to the use of long nanorods with tunable absorption wavelength, and the crystalline Cu O domain with well-defined facets.

View Article and Find Full Text PDF

The CRISPR-Cas9 system is composed of a clustered regularly interspaced short palindromic repeat (CRISPR) and its associated proteins, which are widely present in bacteria and archaea, serving as a specific immune protection against viral and phage secondary infections. CRISPR-Cas9 technology is the third generation of targeted genome editing technologies following zinc finger nucleases (ZFNs) and transcription activator like effector nucleases (TALENs). The CRISPR-Cas9 technology is now widely used in various fields.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) is ubiquitous worldwide and elicits global health problems. The diseases associated with HCMV are a serious threat to humans, especially for the sick, infant, elderly and immunocompromised/immunodeficient individuals. Although traditional antiviral drugs (e.

View Article and Find Full Text PDF

Growth differentiation factor 9 (GDF9) was the first oocyte-specific growth factor identified; however, most information about GDF9 functions comes from studies in the mouse model. In this study, we created a mutant for Gdf9 gene (gdf9-/-) in zebrafish using TALEN approach. The loss of Gdf9 caused a complete arrest of follicle development at primary growth (PG) stage.

View Article and Find Full Text PDF

A chromosome 14 inversion was found in a patient who developed bone marrow aplasia following treatment with allogeneic chimeric antigen receptor (CAR) Tcells containing gene edits made with transcription activator-like effector nucleases (TALEN). TALEN editing sites were not involved at either breakpoint. Recombination signal sequences (RSSs) were found suggesting recombination-activating gene (RAG)-mediated activity.

View Article and Find Full Text PDF