The long-term influence of early-life stress on brain neurophysiology has been extensively investigated using different animal models. Among these, repeated maternal separation (RMS) in rodents is one of the most commonly adopted. In this study, we elucidated the long-lasting effects of exposure to postnatal RMS in C57BL/6J adult mice on voluntary alcohol consumption and nucleus accumbens (NAc) neurophysiology.
View Article and Find Full Text PDFThe consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh).
View Article and Find Full Text PDFThe consumption of alcohol and caffeine affects the lives of billions of individuals worldwide. Although recent evidence indicates that caffeine impairs the reinforcing properties of alcohol, a characterization of its effects on alcohol-stimulated mesolimbic dopamine (DA) function was lacking. Acting as the pro-drug of salsolinol, alcohol excites DA neurons in the posterior ventral tegmental area (pVTA) and increases DA release in the nucleus accumbens shell (AcbSh).
View Article and Find Full Text PDFIn the last decades, the consumption of energy drinks has risen dramatically, especially among young people, adolescents and athletes, driven by the constant search for ergogenic effects, such as the increase in physical and cognitive performance. In parallel, mixed consumption of energy drinks and ethanol, under a binge drinking modality, under a binge drinking modality, has similarly grown among adolescents. However, little is known whether the combined consumption of these drinks, during adolescence, may have long-term effects on central function, raising the question of the risks of this habit on brain maturation.
View Article and Find Full Text PDFIntroduction: Early social isolation (ESI) disrupts neurodevelopmental processes, potentially leading to long-lasting emotional and cognitive changes in adulthood. Communal nesting (CN), i.e.
View Article and Find Full Text PDFIntroduction: Increased glutamate levels and electrolytic fluctuations have been observed in acutely manic patients. Despite some efficacy of the non-competitive NMDA receptor antagonist memantine (Mem), such as antidepressant-like and mood-stabilizer drugs in clinical studies, its specific mechanisms of action are still uncertain. The present study aims to better characterize the Drosophila melanogaster fly Shaker mutants (SH), as a translational model of manic episodes within bipolar disorder in humans, and to investigate the potential anti-manic properties of Mem.
View Article and Find Full Text PDFIt is widely acknowledged that ethanol (EtOH) can alter many neuronal functions, including synaptic signaling, firing discharge, and membrane excitability, through its interaction with multiple membrane proteins and intracellular pathways. Previous work has demonstrated that EtOH enhances the firing rate of hippocampal GABAergic interneurons and thus the presynaptic GABA release at CA1 and CA3 inhibitory synapses through a positive modulation of the hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels. Activation of HCN channels produce an inward current, commonly called I, which plays an essential role in generating/regulating specific neuronal activities in GABAergic interneurons and principal glutamatergic pyramidal neurons such as those in the CA3 subregion.
View Article and Find Full Text PDFThe repeated maternal separation (RMS) is a useful experimental model useful in rodents to study the long-term influence of early-life stress on brain neurophysiology. We here investigated the influence of RMS exposure on hippocampal inhibitory and excitatory synaptic transmission, long-term synaptic plasticity and the related potential alterations in learning and memory performance in adult male and female C57Bl/6J mice. Mice were separated daily from their dam for 360 min, from postnatal day 2 (PND2) to PND17, and experiments were performed at PND 60.
View Article and Find Full Text PDFThe illicit drug market of novel psychoactive substances (NPSs) is expanding, becoming an alarming threat due to increasing intoxication cases and insufficient (if any) knowledge of their effects. Phenethylamine 2-chloro-4,5-methylenedioxymethamphetamine (2-Cl-4,5-MDMA) and synthetic cathinone 3,4-methylenedioxy-α-pyrrolidinohexanophenone (3,4-MDPHP) are new, emerging NPSs suggested to be particularly dangerous. This study verified whether these two new drugs (i) possess abuse liability, (ii) alter plasma corticosterone levels, and (iii) interfere with dopaminergic transmission; male and female adolescent rats were included to evaluate potential sex differences in the drug-induced effects.
View Article and Find Full Text PDFHormonal contraceptives prevent ovulation with subsequent reduction in endogenous levels of estradiol, progesterone and its neuroactive metabolite allopregnanolone. These neurosteroids modulate several brain functions, including neuronal plasticity, cognition and memory. We hypothesized that hormonal contraceptives might affect synaptic plasticity, learning and memory, as a consequence of suppressed endogenous hormones levels.
View Article and Find Full Text PDFGamma-aminobutyric acid type B receptor (GABAR) has been extensively involved in alcohol use disorders; however, the mechanisms by which this receptor modulates alcohol drinking behavior remain murky. In this study, we investigate alcohol consumption and preference in mice lacking functional GABAR using the 2-bottle choice paradigm. We found that GABA, knockout (KO), and heterozygous (HZ) mice drank higher amounts of an alcoholic solution, preferred alcohol to water, and reached higher blood alcohol concentrations (BACs) compared to wild-type (WT) littermates.
View Article and Find Full Text PDFMelatonin, the major regulator of the sleep/wake cycle, also plays important physiological and pharmacological roles in the control of neuronal plasticity and neuroprotection. Accordingly, the secretion of this hormone reaches the maximal extent during brain development (childhood-adolescence) while it is greatly reduced during aging, a condition associated to altered sleep pattern and reduced neuronal plasticity. Altogether, these properties of melatonin have allowed us to demonstrate in both experimental models and clinical studies the great chronobiotic efficacy and sleep promoting effects of exogenous melatonin.
View Article and Find Full Text PDFMethoxetamine (MXE) is a dissociative substance of the arylcyclohexylamine class that has been present on the designer drug market as a ketamine-substitute since 2010. We have previously shown that MXE (i) possesses ketamine-like discriminative and positive rewarding effects in rats, (ii) affects brain processing involved in cognition and emotional responses, (iii) causes long-lasting behavioral abnormalities and neurotoxicity in rats and (iv) induces neurological, sensorimotor and cardiorespiratory alterations in mice. To shed light on the mechanisms through which MXE exerts its effects, we conducted a multidisciplinary study to evaluate the various neurotransmitter systems presumably involved in its actions on the brain.
View Article and Find Full Text PDFAt the present time, gut microbiota inspires great interest in the field of neuroscience as a function of its role in normal physiology and involvement in brain function. This aspect suggests a specific gut-brain pathway, mainly modulated by gut microbiota activity. Among the multiple actions controlled by microbiota at the brain level, neuronal plasticity and cognitive function represent two of the most interesting aspects of this cross-talk communication.
View Article and Find Full Text PDFMorphine- and ethanol-induced stimulation of neuronal firing of ventral tegmental area (VTA) dopaminergic neurons and of dopamine (DA) transmission in the shell of the nucleus accumbens (AcbSh) represents a crucial electrophysiological and neurochemical response underlying the ability of these compounds to elicit motivated behaviors and trigger a cascade of plasticity-related biochemical events. Previous studies indicate that the standardized methanolic extract of roots (WSE) prevents morphine- and ethanol-elicited conditioned place preference and oral ethanol self-administration. Aim of the present research was to investigate whether WSE may also interfere with the ability of morphine and ethanol to stimulate VTA dopaminergic neurons and thus AcbSh DA transmission as assessed in male Sprague-Dawley rats by means of patch-clamp recordings in mesencephalic slices and brain microdialysis, respectively.
View Article and Find Full Text PDFNine compounds, including two undescribed withanolides, withasomniferolides A and B (1 and 2), three known withanolides (3-5), a ferulic acid dimeric ester (6), and an inseparable mixture of three long alkyl chain ferulic acid esters (7-9), were isolated from a GABA receptor positive activator methanol extract of the roots of Withania somnifera. The structures of the isolated compounds were elucidated based on NMR, MS, and ECD data analysis. In order to bioassay the single ferulic acid derivatives, compounds 6-9 were also synthesized.
View Article and Find Full Text PDFEnvironmental enrichment is known to improve brain plasticity and protect synaptic function from negative insults. In the present study we used the exposure to social enrichment to ameliorate the negative effect observed in post weaning isolated male rats in which neurotrophic factors, neurogenesis, neuronal dendritic trees and spines were altered markedly in the hippocampus. After the 4 weeks of post-weaning social isolation followed by 4 weeks of reunion, different neuronal growth markers as well as neuronal morphology were evaluated using different experimental approaches.
View Article and Find Full Text PDFAlcohol abuse leads to aberrant forms of emotionally salient memory, i.e., limbic memory, that promote escalated alcohol consumption and relapse.
View Article and Find Full Text PDFFindings from studies using animal models expressing amyotrophic lateral sclerosis (ALS) mutations in RNA-binding proteins, such as Transactive Response DNA-binding protein-43 (TDP-43), indicate that this protein, which is involved in multiple functions, including transcriptional regulation and pre-mRNA splicing, represents a key candidate in ALS development. This study focuses on characterizing, in a Drosophila genetic model of ALS (TDP-43), the effects of Mucuna pruriens (Mpe) and Withania somnifera (Wse). Electrophysiological and behavioural data in TDP-43 mutant flies revealed anomalous locomotion (i.
View Article and Find Full Text PDFAdverse maternal behaviors during pregnancy and unfavorable postnatal experiences during development are associated with an increased risk of developing psychiatric disorders, as well as, a vulnerability to alcohol addiction in adulthood. Here, we examined the effects of combined ethanol exposure during late pregnancy and postnatal maternal separation (MS) on HPA responsiveness, anxiety behavior and preference for alcohol consumption in adult male rats. Animals exposed to both conditions revealed a decrease in blood levels of allopregnanolone accompanied by increased anxiety behavior.
View Article and Find Full Text PDFThe present study was aimed at characterizing the effects of Withania somnifera (Wse) and Mucuna pruriens (Mpe) on a Drosophila melanogaster model for Amyotrophic Lateral Sclerosis (ALS). In particular, the effects of Wse and Mpe were assessed following feeding the flies selectively overexpressing the wild human copper, zinc-superoxide dismutase (hSOD1-gain-of-function) in Drosophila motoneurons. Although ALS-hSOD1 mutants showed no impairment in life span, with respect to GAL4 controls, the results revealed impairment of climbing behaviour, muscle electrophysiological parameters (latency and amplitude of ePSPs) as well as thoracic ganglia mitochondrial functions.
View Article and Find Full Text PDFExposure of female rats to estradiol during the perinatal period has profound effects on GABAergic neurotransmission that are crucial to establish sexually dimorphic brain characteristics. We previously showed that neonatal β-estradiol 3-benzoate (EB) treatment decreases brain concentrations of the neurosteroid allopregnanolone, a potent positive modulator of extrasynaptic GABA receptors (GABAR). We thus evaluated whether neonatal EB treatment affects GABAR expression and function in the hippocampus of adult female rats.
View Article and Find Full Text PDF