Publications by authors named "Talaibek Borbiev"

This mini review summarizes the currently available clinical biofluid assays for PCa. The second most prevalent cancer worldwide is PCa. PCa is a heterogeneous disease, with a large percentage of prostate tumors being indolent, and with a relatively slow metastatic potential.

View Article and Find Full Text PDF

Purpose: Prostate cancer is predominantly indolent at diagnosis with a small fraction (15% to 25%) representing aggressive subtype (Gleason score 7-10), which is prone to metastatic progression. It is critical to explore noninvasive assays for the early detection of this aggressive subtype, when it still can be treated effectively. Additionally, there is an emerging need to develop markers that perform equally well across races, as racial differences in the prevalence and mortality of prostate cancer has become evident.

View Article and Find Full Text PDF

Mechanistic studies of deregulated ERG in prostate cancer and other cancers continue to enhance its role in cancer biology and its utility as a biomarker and therapeutic target. Here, we show that ERG, through its physical interaction with androgen receptor, induces AR aggregation and endoplasmic reticulum stress in the prostate glands of ERG transgenic mice. Histomorphological alterations and the expression of ER stress sensors Atf6, Ire1α, Perk, their downstream effectors Grp78/BiP and eIF2α in ERG transgenic mouse prostate glands indicate the presence of chronic ER stress.

View Article and Find Full Text PDF

Objective: Using a mouse model of intrauterine inflammation, we have demonstrated that exposure to inflammation induces preterm birth and perinatal brain injury. Mesenchymal stem cells (MSCs) have been shown to exhibit immunomodulatory effects in many inflammatory conditions. We hypothesized that treatment with human adipose tissue-derived MSCs may decrease the rate of preterm birth and perinatal brain injury through changes in antiinflammatory and regulatory milieu.

View Article and Find Full Text PDF

Unlabelled: Intrauterine inflammation is associated with preterm birth and can lead to fetal neuroinflammation and neurobehavioral disorders in newborns. Dendrimers can intrinsically target and deliver drugs for the treatment of neuroinflammation. We explore whether hydroxyl polyamidoamine (PAMAM) dendrimer (G4-OH)-based nanomedicines can be delivered to the fetus by intra-amniotic administration, in a mouse model of intrauterine inflammation.

View Article and Find Full Text PDF

Preterm infants, especially those that are exposed to prenatal intrauterine infection or inflammation, are at a major risk for adverse neurological outcomes, including cognitive, motor and behavioral disabilities. We have previously shown in a mouse model that there is an acute fetal brain insult associated with intrauterine inflammation. The objectives of this study were: (1) to elucidate long-term (into adolescence and adulthood) neurological outcomes by assessing neurobehavioral development, MRI, immunohistochemistry and flow cytometry of cells of immune origin and (2) to determine whether there are any sex-specific differences in brain development associated with intrauterine inflammation.

View Article and Find Full Text PDF

We have previously shown that treatment of bovine endothelial cell (EC) monolayers with phorbol myristate acetate (PMA) leads to the thinning of cortical actin ring and rearrangement of the cytoskeleton into a grid-like structure, concomitant with the loss of endothelial barrier function. In the current work, we focused on caldesmon, a cytoskeletal protein, regulating actomyosin interaction. We hypothesized that protein kinase C (PKC) activation by PMA leads to the changes in caldesmon properties such as phosphorylation and cellular localization.

View Article and Find Full Text PDF

We have previously shown that thrombin induces endothelial cell barrier dysfunction via cytoskeleton activation and contraction and have determined the important role of endothelial cell myosin light chain kinase (MLCK) in this process. In the present study we explored p38 MAP kinase as a potentially important enzyme in thrombin-mediated endothelial cell contractile response and permeability. Thrombin induces significant p38 MAP kinase activation in a time-dependent manner with maximal effect at 30 min, which correlates with increased phosphorylation of actin- and myosin-binding protein, caldesmon.

View Article and Find Full Text PDF

Vascular endothelium forms a continuous, semipermeable barrier that regulates the transvascular movement of hormones, macromolecules, and other solutes. Here, we describe a novel immediate early gene that is expressed selectively in vascular endothelial cells, verge (vascular early response gene). Verge protein includes an N-terminal region of approximately 70 amino acids with modest homology (approximately 30% identity) to Apolipoprotein L but is otherwise unique.

View Article and Find Full Text PDF

We have previously shown that thrombin-induced endothelial cell barrier dysfunction involves cytoskeletal rearrangement and contraction, and we have elucidated the important role of endothelial cell myosin light chain kinase and the actin- and myosin-binding protein caldesmon. We evaluated the contribution of calmodulin (CaM) kinase II and extracellular signal-regulated kinase (ERK) activation in thrombin-mediated bovine pulmonary artery endothelial cell contraction and barrier dysfunction. Similar to thrombin, infection with a constitutively active adenoviral alpha-CaM kinase II construct induced significant ERK activation, indicating that CaM kinase II activation lies upstream of ERK.

View Article and Find Full Text PDF

Bordetella pertussis is an important cause of infection in humans worldwide, with full expression of the syndrome associated with characteristic increases in lung permeability and airway edema. The exact cellular mechanisms by which pertussis toxin (PTX) exerts pulmonary toxicity remain unknown, but may involve its ability to ADP-ribosylate-specific G-proteins. We determined that PTX directly and reproducibly reduced lung endothelial and epithelial cell barrier function in vitro and in vivo assessed by decreases in transmonolayer electrical resistance (TER) and isolated perfused lung preparations.

View Article and Find Full Text PDF