Nitrene-transfer reactions are powerful synthetic tools for the direct incorporation of nitrogen atoms into organic molecules. The discovery of novel nitrene-transfer reactions has been dominantly supported not only by improvements in transition-metal catalysts but also by the employment of novel precursors of nitrenoids. Since pioneering work involving the use of organic azides and iminoiodinanes as practical synthetic tools for nitrogen-containing compounds was reported, a new approach using various N-heterocycles containing strain energy or a weak bond has emerged.
View Article and Find Full Text PDFThe iron-catalyzed cycloaddition reaction of alkene-tethered oxime esters with 1,2-disubstituted alkenes afforded tetrahydropyrrolizines, the structural motif often seen in bicyclic alkaloids. The reaction proceeds through consecutive cycloaddition reactions. These include, first, intramolecular cyclization, followed by intermolecular cyclization with a 1,2-disubstituted alkene in a regioselective manner where an imine moiety first generated plays a pivotal role.
View Article and Find Full Text PDFIntermolecular C-H alkylation of simple arenes in the presence of an iron catalyst has been achieved in a cascade manner with an aminative cyclization triggered by N-O bond cleavage of an alkene-tethered oxime ester. Various arenes, including electron-rich and electron-poor arenes, and heteroarenes can be employed in the reaction system. Regioselectivity and radical trapping experiments support the involvement of alkyl radical species, which undergo a homolytic aromatic substitution (HAS) to afford the arylation products.
View Article and Find Full Text PDFThe reaction of an oxime ester with [Ru(PPh ) X ] proceeded smoothly at room temperature to afford a stable Ru ketimido complex as oxidative adduct. The structure of the complex was unambiguously determined by X-ray crystallographic analysis, which showed an almost linear Ru-N-C array. The electronic properties of the nitrogen atom were estimated by DFT calculations, and the results suggested double-bond character of the Ru-N bond.
View Article and Find Full Text PDFHerein is shown how a novel catalytic asymmetric propargylation of 3,4-dihydro-β-carboline, followed by a designed Au(I)/Ag(I)-mediated 6-endo-dig cyclization, can directly deliver the indolenine-fused methanoquinolizidine core of the akuammiline alkaloid strictamine in its native oxidation state, ultimately achieving a 7-step formal asymmetric total synthesis. Also demonstrated are how the cyclization products can rearrange into vincorine-type skeletons and a further use for the developed propargylation with the first catalytic asymmetric total synthesis of decarbomethoxydihydrogambirtannine.
View Article and Find Full Text PDFA phosphine-free iridium-catalyzed reaction of isoxazol-5(4H)-ones (isoxazolones) has been developed, and affords 2H-azirines through decarboxylation and ring contraction. This method provides an efficient and environmentally benign protocol which could replace the conventional approaches used to synthesize 2H-azirines.
View Article and Find Full Text PDFWe have developed an indium-catalyzed [2 + 2] cycloaddition of allylsilanes to alkynones leading to selective cyclobutenone formation. The resulting cyclobutenones were readily converted to the oxidized products by Tamao-Fleming oxidation or the ring-opened products by an electrocyclic reaction.
View Article and Find Full Text PDFThis paper describes the development of a palladium-catalyzed decarboxylative inter- and intramolecular condensation reaction of isoxazol-5(4 H)-ones with carbonyl compounds in the presence of PPh3 , giving various 2-azabuta-1,3-dienes or pyrroles in moderate to high yields.
View Article and Find Full Text PDF