Publications by authors named "Takuya Sekine"

Mucosal-associated invariant T (MAIT) cells are unconventional T cells that recognize microbial riboflavin pathway metabolites presented by evolutionarily conserved MR1 molecules. We explored the human MAIT cell compartment across organ donor-matched blood, barrier, and lymphoid tissues. MAIT cell population size was donor dependent with distinct tissue compartmentalization patterns and adaptations: Intestinal CD103 resident MAIT cells presented an immunoregulatory CD39CD27 profile, whereas MAIT cells expressing NCAM1/CD56 dominated in the liver and exhibited enhanced effector capacity with elevated response magnitude and polyfunctionality.

View Article and Find Full Text PDF

Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8 T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8 T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8 T cells may contribute to or drive disease, at least in part through release of IFN-γ.

View Article and Find Full Text PDF

Primary hemophagocytic lymphohistiocytosis (HLH) is a life-threatening disorder associated with autosomal recessive variants in genes required for perforin-mediated lymphocyte cytotoxicity. A rapid diagnosis is crucial for successful treatment. Although defective cytotoxic T lymphocyte (CTL) function causes pathogenesis, quantification of natural killer (NK)-cell exocytosis triggered by K562 target cells currently represents a standard diagnostic procedure for primary HLH.

View Article and Find Full Text PDF

Case: A 36-year-old female healthcare worker with no past medical history, accidentally injected her flexed right middle finger with live attenuated bacillus Calmette-Guérin (BCG). Swelling and erythema around the injured area appeared two days after the needlestick injury. She was referred to the hospital and presented approximately nine days after self-inoculation.

View Article and Find Full Text PDF

Mucosal-associated invariant T (MAIT) cells are an abundant population of unconventional T cells in humans and play important roles in immune defense against microbial infections. Severe COVID-19 is associated with strong activation of MAIT cells and loss of these cells from circulation. In the present study, we investigated the capacity of MAIT cells to recover after severe COVID-19.

View Article and Find Full Text PDF

Suboptimal immunity to SARS-CoV-2 mRNA vaccination has frequently been observed in individuals with various immunodeficiencies. Given the increased antibody evasion properties of emerging SARS-CoV-2 subvariants, it is necessary to assess whether other components of adaptive immunity generate resilient and protective responses against infection. We assessed T cell responses in 279 individuals, covering five different immunodeficiencies and healthy controls, before and after booster mRNA vaccination, as well as after Omicron infection in a subset of patients.

View Article and Find Full Text PDF

Mpox represents a persistent health concern with varying disease severity. Reinfections with mpox virus (MPXV) are rare, possibly indicating effective memory responses to MPXV or related poxviruses, notably vaccinia virus (VACV) from smallpox vaccination. We assessed cross-reactive and virus-specific CD4 and CD8 T cells in healthy individuals and mpox convalescent donors.

View Article and Find Full Text PDF

To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells.

View Article and Find Full Text PDF

Many immunocompromised patients mount suboptimal humoral immunity after SARS-CoV-2 mRNA vaccination. Here, we assessed the single-cell profile of SARS-CoV-2-specific T cells post-mRNA vaccination in healthy individuals and patients with various forms of immunodeficiencies. Impaired vaccine-induced cell-mediated immunity was observed in many immunocompromised patients, particularly in solid-organ transplant and chronic lymphocytic leukemia patients.

View Article and Find Full Text PDF

The Karolinska KI/K COVID-19 Immune Atlas project was conceptualized in March 2020 as a part of the academic research response to the developing SARS-CoV-2 pandemic. The aim was to rapidly provide a curated dataset covering the acute immune response towards SARS-CoV-2 infection in humans, as it occurred during the first wave. The Immune Atlas was built as an open resource for broad research and educational purposes.

View Article and Find Full Text PDF

Natural killer (NK) cells are innate immune cells that contribute to host defense against virus infections. NK cells respond to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and are activated in patients with acute coronavirus disease 2019 (COVID-19). However, by which mechanisms NK cells detect SARS-CoV-2-infected cells remains largely unknown.

View Article and Find Full Text PDF

Corona disease 2019 (COVID-19) affects multiple organ systems. Recent studies have indicated perturbations in the circulating metabolome linked to COVID-19 severity. However, several questions pertain with respect to the metabolome in COVID-19.

View Article and Find Full Text PDF

Exceptional efforts have been undertaken to shed light into the biology of adaptive immune responses to SARS-CoV-2. T cells occupy a central role in adaptive immunity to mediate helper functions to different arms of the immune system and are fundamental to mediate protection, control, and clearance of most viral infections. Even though many questions remain unsolved, there is a growing literature linking specific T cell characteristics to differential COVID-19 severity and vaccine outcome.

View Article and Find Full Text PDF

Cross-reactive CD4 T cells that recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are more commonly detected in the peripheral blood of unexposed individuals compared with SARS-CoV-2–reactive CD8 T cells. However, large numbers of memory CD8 T cells reside in tissues, feasibly harboring localized SARS-CoV-2–specific immune responses. To test this idea, we performed a comprehensive functional and phenotypic analysis of virus-specific T cells in tonsils, a major lymphoid tissue site in the upper respiratory tract, and matched peripheral blood samples obtained from children and adults before the emergence of COVID-19 (coronavirus disease 2019).

View Article and Find Full Text PDF

Lymphocyte migration is essential for adaptive immune surveillance. However, our current understanding of this process is rudimentary, because most human studies have been restricted to immunological analyses of blood and various tissues. To address this knowledge gap, we used an integrated approach to characterize tissue-emigrant lineages in thoracic duct lymph (TDL).

View Article and Find Full Text PDF

Severe COVID-19 is characterized by excessive inflammation of the lower airways. The balance of protective versus pathological immune responses in COVID-19 is incompletely understood. Mucosa-associated invariant T (MAIT) cells are antimicrobial T cells that recognize bacterial metabolites, and can also function as innate-like sensors and mediators of antiviral responses.

View Article and Find Full Text PDF

SARS-CoV-2-specific memory T cells will likely prove critical for long-term immune protection against COVID-19. Here, we systematically mapped the functional and phenotypic landscape of SARS-CoV-2-specific T cell responses in unexposed individuals, exposed family members, and individuals with acute or convalescent COVID-19. Acute-phase SARS-CoV-2-specific T cells displayed a highly activated cytotoxic phenotype that correlated with various clinical markers of disease severity, whereas convalescent-phase SARS-CoV-2-specific T cells were polyfunctional and displayed a stem-like memory phenotype.

View Article and Find Full Text PDF

CD8 T cell exhaustion is a hallmark of many cancers and chronic infections. In mice, T cell factor 1 (TCF-1) maintains exhausted CD8 T cell responses, whereas thymocyte selection-associated HMG box (TOX) is required for the epigenetic remodeling and survival of exhausted CD8 T cells. However, it has remained unclear to what extent these transcription factors play analogous roles in humans.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA) B*51:01 and endoplasmic reticulum aminopeptidase 1 (ERAP1) are strongly genetically associated with Behçet's disease (BD). Previous studies have defined two subgroups of HLA-B*51 peptidome containing proline (Pro) or alanine (Ala) at position 2 (P2). Little is known about the unconventional non-Pro/Ala2 HLA-B*51-bound peptides.

View Article and Find Full Text PDF

Although familial hemophagocytic lymphohistiocytosis (FHL) generally manifest with a combination of unremitting fever, hepatosplenomegaly, and pancytopenia; unusual presentations should also be taken into account. Herein, we present 3 FHL cases with 2 novel mutations with different initial presentations. The first patient bearing a homozygous truncation mutation in UNC13D (c.

View Article and Find Full Text PDF

Most candidate drugs currently fail later-stage clinical trials, largely due to poor prediction of efficacy on early target selection. Drug targets with genetic support are more likely to be therapeutically valid, but the translational use of genome-scale data such as from genome-wide association studies for drug target discovery in complex diseases remains challenging. Here, we show that integration of functional genomic and immune-related annotations, together with knowledge of network connectivity, maximizes the informativeness of genetics for target validation, defining the target prioritization landscape for 30 immune traits at the gene and pathway level.

View Article and Find Full Text PDF

Pulmonary aspergillosis is an opportunistic fungal infection affecting immunocompromised individuals. Increasing understanding of natural killer (NK) cell immunobiology has aroused considerable interest around the role of NK cells in pulmonary aspergillosis in the immunocompromised host. Murine studies indicate that NK cells play a critical role in pulmonary clearance of .

View Article and Find Full Text PDF

Treatment options for Ankylosing Spondylitis (AS) are still limited. The T helper cell 17 (Th17) pathway has emerged as a major driver of disease pathogenesis and a good treatment target. Janus kinases (JAK) are key transducers of cytokine signals in Th17 cells and therefore promising targets for the treatment of AS.

View Article and Find Full Text PDF