Publications by authors named "Takuya Majima"

Fast ion beams induce damage to deoxyribonucleic acid (DNA) by chemical products, including secondary electrons, produced from interaction with liquid water in living cells. However, the production process of these chemical products in the Bragg peak region used in particle therapy is not fully understood. To investigate this process, we conducted experiments to evaluate the radiolytic yields produced when a liquid water jet in vacuum is irradiated with MeV-energy carbon beams.

View Article and Find Full Text PDF

To gain insight into complex ion-molecule reactions induced by MeV-energy heavy ion irradiation of condensed matter, we performed a mass spectrometric study of secondary ions emitted from methanol microdroplet surfaces by 2.0 MeV C. We observed positive and negative secondary ions, including fragments, clusters, and reaction products.

View Article and Find Full Text PDF

The influence of secondary electrons on radiation damage of biomolecules in water was studied by fast heavy-ion irradiation of biomolecular solutions. Water microdroplets containing the amino acid glycine under vacuum were irradiated by fast carbon projectiles with energies of 0.8-8.

View Article and Find Full Text PDF

The effect of aqueous environment on fast heavy-ion radiation damage of biomolecules was studied by comparative experiments using liquid- and gas-phase amino acid targets. Three types of amino acids with different chemical structures were used: glycine, proline, and hydroxyproline. Ion-induced reaction products were analyzed by time-of-flight secondary-ion mass spectrometry.

View Article and Find Full Text PDF

We have successfully determined the internuclear distance of I molecules in an alignment laser field by applying our molecular structure determination methodology to an I 2p X-ray photoelectron diffraction profile observed with femtosecond X-ray free electron laser pulses. Using this methodology, we have found that the internuclear distance of the sample I molecules in an alignment Nd:YAG laser field of 6 × 10 W/cm is elongated by from 0.18 to 0.

View Article and Find Full Text PDF

We report on the measurement of deep inner-shell 2p X-ray photoelectron diffraction (XPD) patterns from laser-aligned I2 molecules using X-ray free-electron laser (XFEL) pulses. The XPD patterns of the I2 molecules, aligned parallel to the polarization vector of the XFEL, were well matched with our theoretical calculations. Further, we propose a criterion for applying our molecular-structure-determination methodology to the experimental XPD data.

View Article and Find Full Text PDF

A novel experimental technique has been developed to observe a trace of optical absorption of free mass-selected ions. The technique combines a linear radio-frequency ion trap with a high-finesse optical cavity to perform cavity ring-down spectroscopy (photon-trap spectroscopy for generality), where the storage lifetime of photons in the cavity provides a sensitivity high enough to probe the trapped ions. Absorption spectra of the manganese ion Mn(+) are presented, showing hyperfine structures for the (7)P(2,3,4)<--(7)S(3) transitions in the ultraviolet range.

View Article and Find Full Text PDF