Publications by authors named "Takuya Kobayakawa"

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), has not yet been eradicated. SARS-CoV-2 has two types of proteases, a main protease (M) and a papain-like protease (PL), which together process two translated non-structural polyproteins, pp1a and pp1ab, to produce functional viral proteins. In this study, effective inhibitors against PL of SARS-CoV-2 were designed and synthesized using GRL-0048 as a lead.

View Article and Find Full Text PDF

Ample biologically active peptides have been found, identified and modified for use in drug discovery to date. However, several factors, such as low metabolic stability due to proteolysis and non-specific interactions with multiple off-target molecules, might limit the therapeutic use of peptides. To enhance the stability and/or bioactivity of peptides, the development of "peptidomimetics," which mimick peptide molecules, is considered to be idealistic.

View Article and Find Full Text PDF

Toward human immunodeficiency virus type-1 (HIV-1) cure, cells latently infected with HIV-1 must be eliminated from people living with HIV-1. We previously developed a protein kinase C (PKC) activator, diacylglycerol (DAG)-lactone derivative , with high HIV-1 latency-reversing activity, based on YSE028 () as a lead compound and found that the activity was correlated with binding affinity for PKC and stability against esterase-mediated hydrolysis. Here, we synthesized new DAG-lactone derivatives not only containing a tertiary ester group or an isoxazole surrogate but also several symmetric alkylidene moieties to improve HIV-1 latency reversing activity.

View Article and Find Full Text PDF

An improvement of the two-photon excitation was achieved using 8-azacoumarin-type caged compounds, which showed large values of the two-photon uncaging action cross-section (δ >0.1 Goeppert-Mayer (GM)). In particular, the 7-hydroxy-6-iodo-8-azacoumarin (8-aza-Ihc)-caged compound showed an excellent uncaging action cross-section value (δ = 1.

View Article and Find Full Text PDF

The capsid of human immunodeficiency virus type 1 (HIV-1) forms a conical structure by assembling oligomers of capsid (CA) proteins and is a virion shell that encapsulates viral RNA. The inhibition of the CA function could be an appropriate target for suppression of HIV-1 replication because the CA proteins are highly conserved among many strains of HIV-1, and the drug targeting CA, lenacapavir, has been clinically developed by Gilead Sciences, Inc. Interface hydrophobic interactions between two CA molecules via the Trp184 and Met185 residues in the CA sequence are indispensable for conformational stabilization of the CA multimer.

View Article and Find Full Text PDF

In the development of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) drugs, its main protease (M), which is an essential enzyme for viral replication, is a promising target. To date, the M inhibitors, nirmatrelvir and ensitrelvir, have been clinically developed by Pfizer Inc. and Shionogi & Co.

View Article and Find Full Text PDF

Hepatitis B is a viral hepatitis, which is caused by infection of hepatitis B virus (HBV). This disease progresses to chronic hepatitis, cirrhosis and liver cancer. To treat hepatitis B, exclusion of virus and covalently closed circular DNA (cccDNA) that is formed in hepatocyte nucleus is necessary.

View Article and Find Full Text PDF

The main protease (M) of SARS-CoV-2 is an attractive target for the development of drugs to treat COVID-19. Here, we report the design, synthesis, and structure-activity relationship (SAR) studies of highly potent SARS-CoV-2 M inhibitors including TKB245 ()/TKB248 (). Since we have previously developed M inhibitors () and (), several hybrid molecules of these previous compounds combined with nirmatrelvir () were designed and synthesized.

View Article and Find Full Text PDF

Cells latently infected with human immunodeficiency virus type 1 (HIV-1) prevent people living with HIV-1 from obtaining a cure to the infectious disease. Latency reversing agents (LRAs) such as protein kinase C (PKC) activators and histone deacetylase (HDAC) inhibitors can reactivate cells latently infected with HIV-1. Several trials based on treatment with HDAC inhibitors alone, however, failed to reduce the number of latent HIV-1 reservoirs.

View Article and Find Full Text PDF

Membrane fusion is a critical and indispensable step in the replication cycles of viruses such as SARS-CoV-2 and human immunodeficiency virus type-1 (HIV-1). In this step, a trimer of the heptad repeat 1 (HR1) region interacts with the three HR2 regions and forms a 6-helix bundle (6-HB) structure to proceed with membrane fusion of the virus envelope and host cells. Recently, several researchers have developed potent peptidic SARS-CoV-2 fusion inhibitors based on the HR2 sequence and including some modifications.

View Article and Find Full Text PDF
Article Synopsis
  • COVID-19, caused by the virus SARS-CoV-2, remains a significant global health threat, with current treatments lacking sufficient effectiveness.
  • Researchers have identified two new small molecules, TKB245 and TKB248, that effectively inhibit the main protease of SARS-CoV-2, showing greater potency against various strains compared to existing treatments.
  • Both compounds demonstrate the ability to block replication of COVID-19 variants in lab models and bind to the virus's main protease, suggesting they could lead to the development of more effective COVID-19 treatments.
View Article and Find Full Text PDF

The HIV-1 capsid is a shell that encapsulates viral RNA, and forms a conical structure by assembling oligomers of capsid (CA) proteins. Since the CA proteins are highly conserved among many strains of HIV-1, the inhibition of the CA function could be an appropriate goal for suppression of HIV-1 replication, but to date, no drug targeting CA has been developed. Hydrophobic interactions between two CA molecules through Trp184 and Met185 in the protein are known to be indispensable for conformational stabilization of the CA multimer.

View Article and Find Full Text PDF

By acclimatizing CCR5-tropic tier 1B SHIV-MK1 to rhesus monkeys, a tier 2 SHIV-MK38 strain with neutralization resistance and high replication ability was generated. In this study, we generated SHIV-MK38C, a monkey-infectious consensus molecular clone of SHIV-MK38. Analysis using pseudotype viruses showed that MK38C was tier 1C because it lacked the N169D mutation, which is the most important mutation for neutralization resistance.

View Article and Find Full Text PDF

Combinational antiretroviral therapy (cART) dramatically suppresses the viral load to undetectable levels in human immunodeficiency virus (HIV)-infected patients. However, HIV-1 reservoirs in CD4+T cells and myeloid cells, which can evade cART and host antiviral immune systems, are still significant obstacles to HIV-1 eradication. The "Shock and Kill" approach using latently-reversing agents (LRAs) is therefore currently developing strategies for effective HIV-1 reactivation from latency and inducing cell death.

View Article and Find Full Text PDF

Small CD4-mimetic compound (CD4mc), which inhibits the interaction between gp120 with CD4, acts as an entry inhibitor and induces structural changes in the HIV-1 envelope glycoprotein trimer (Env) through its insertion within the Phe43 cavity of gp120. We recently developed YIR-821, a novel CD4mc, that has potent antiviral activity and lower toxicity than the prototype NBD-556. To assess the possibility of clinical application of YIR-821, we tested its antiviral activity using a panel of HIV-1 pseudoviruses from different subtypes.

View Article and Find Full Text PDF

Hybrid molecules containing small CD4 mimics and gp41-C-terminal heptad repeat (CHR)-related peptides have been developed. A YIR-821 derivative was adopted as a CD4 mimic, which inhibits the interaction of gp120 with CD4. SC-peptides, SC34 and SC22EK, were also used as CHR-related peptides, which inhibit the interaction between the N-terminal heptad repeat (NHR) and CHR and thereby membrane fusion.

View Article and Find Full Text PDF

Potent and biostable inhibitors of the main protease (M) of SARS-CoV-2 were designed and synthesized based on an active hit compound 5h (). Our strategy was based not only on the introduction of fluorine atoms into the inhibitor molecule for an increase of binding affinity for the pocket of M and cell membrane permeability but also on the replacement of the digestible amide bond by a surrogate structure to increase the biostability of the compounds. Compound is highly potent and blocks SARS-CoV-2 infection without a viral breakthrough.

View Article and Find Full Text PDF

Several small molecule CD4 mimics, which inhibit the interaction of gp120 with CD4, have been developed. Original CD4 mimics such as NBD-556, which has an aromatic ring, an oxalamide linker and a piperidine moiety, possess significant anti-HIV activity but with their hydrophobic aromatic ring-containing structures are poorly soluble in water. We have developed derivatives with a halopyridinyl group in place of the phenyl group, such as KKN-134, and found them to have excellent aqueous solubility.

View Article and Find Full Text PDF

Protein kinase C (PKC) is associated with a central cellular signal transduction pathway and disorders such as cancer and Alzheimer-type dementia and is therefore a target for the treatment of these diseases. The development of simple methods suitable for high-throughput screening to find potent PKC ligands is desirable. We have developed an assay based on fluorescence-quenching screening with a solvatochromic fluorophore attached to a competitive probe and its alternative method based on Förster/fluorescence resonance energy transfer (FRET) phenomena.

View Article and Find Full Text PDF

To date various biologically active peptides have been discovered, characterized and modified for drug discovery. However, the utilization of peptides as therapeutics involves some limitation due to several factors, including low metabolic stability owing to proteolysis and non-specific interactions with multiple off-target molecules. Hence, the development of "peptidomimetics," in which a part or whole of a molecule is modified, is a desirable strategy to enhance the stability or bioactivity of peptide-based drugs.

View Article and Find Full Text PDF

Advances in antiviral therapy have dramatically improved the therapeutic effects on HIV type 1 (HIV-1) infection. However, even with potent combined antiretroviral therapy, HIV-1 latently infected cells cannot be fully eradicated. Latency-reversing agents (LRAs) are considered a potential tool for eliminating such cells; however, recent and studies have raised serious concerns regarding the efficacy and safety of the "shock and kill" strategy using LRAs.

View Article and Find Full Text PDF

Improved methods of convergent synthesis for peptidomimetic utilizing a chloroalkene dipeptide isostere (CADI) are reported. In this synthesis, Fmoc- or Boc-protected carboxylic acids can be produced from - and -terminal analogues corresponding to each amino acid starting material via an Evans aldol reaction, followed by a [3.3] sigmatropic rearrangement utilizing the Ichikawa allylcyanate rearrangement reaction.

View Article and Find Full Text PDF

The capsid of human immunodeficiency virus type 1 (HIV-1) is a shell that encloses viral RNA and is highly conserved among many strains of the virus. It forms a conical structure by assembling oligomers of capsid (CA) proteins. CA dysfunction is expected to be an important target of suppression of HIV-1 replication, and it is important to understand a new mechanism that could lead to the CA dysfunction.

View Article and Find Full Text PDF

CD4 mimics are small molecules that inhibit the interaction of gp120 with CD4. We have developed several CD4 mimics. Herein, hybrid molecules consisting of CD4 mimics with a long alkyl chain or a PEG unit attached through a self-cleavable linker were synthesized.

View Article and Find Full Text PDF

Several anti-HIV-1 peptides have previously been found among overlapping fragment peptide libraries that contain an octa-arginyl moiety and cover the whole sequence of an HIV-1 capsid (CA) protein. Several derivatives based on a potent CA fragment peptide CA-19L have been synthesized. CA-19L overlaps with the Helix 9 region of the CA protein, which could be important for oligomerization of the CA proteins.

View Article and Find Full Text PDF