The major goals of texture research in computer vision are to understand, model, and process texture and ultimately simulate human visual information processing using computer technologies. The field of computer vision has witnessed remarkable advancements in material recognition using deep convolutional neural networks (DCNNs), which have enabled various computer vision applications, such as self-driving cars, facial and gesture recognition, and automatic number plate recognition. However, for computer vision to "express" texture like human beings is still difficult because texture description has no correct or incorrect answer and is ambiguous.
View Article and Find Full Text PDFIn the presence of a catalytic amount of Ni(cod) (cod = 1,5-cyclooctadiene) and PCy (Cy = cyclohexyl), the cross-tetramerization of tetrafluoroethylene (TFE), ethylene, alkynes, and aldehydes leads to a variety of fluorine-containing enone derivatives. This reaction is the first example of a highly selective cross-tetramerization between four different unsaturated compounds. Stoichiometric reactions revealed that the present reaction involves partially fluorinated five- and seven-membered nickelacycles as key reaction intermediates.
View Article and Find Full Text PDFIn the presence of a catalytic amount of Ni(cod) (cod = 1,5-cyclooctadiene) and PCy (Cy = cyclohexyl), the cross-tetramerization of tetrafluoroethylene (TFE), alkynes, and ethylene occurred in a highly selective manner to afford a variety of 1,3-dienes with a 3,3,4,4-tetrafluorobutyl chain. In addition, a Ni(0)-catalyzed cross-tetramerization of TFE, alkynes, ethylene, and styrenes was developed. These catalytic reactions might proceed via partially fluorinated five- and seven-membered nickelacycle key intermediates.
View Article and Find Full Text PDFQuantitative trait loci (QTLs) associated with eating quality, grain appearance quality and yield-related traits were mapped in recombinant inbred lines (RILs) derived from closely related rice ( L. subsp. ) cultivars, Yukihikari (good eating quality) and Joiku462 (superior eating quality and high grain appearance quality).
View Article and Find Full Text PDFWe report a dual-frequency injection-locked continuous-wave near-infrared laser. The entire system consists of a Ti:sapphire ring laser as a power oscillator, two independent diode lasers employed as seed lasers, and a master cavity providing a frequency reference. Stable dual-frequency injection-locked oscillation is achieved with a maximum output power of 2.
View Article and Find Full Text PDFA series of single crystals of quasi-one-dimensional bromo-bridged Ni-Pd mixed-metal MX chain compounds Ni(1)(-)(x)()Pd(x)()(chxn)(2)Br(3) (chxn = 1(R),2(R)-diaminocyclohexane) have been obtained by electrochemical oxidation methods of the mixed methanol solutions of parent Ni(II) complex [Ni(chxn)(2)]Br(2) and Pd(II) complex [Pd(chxn)(2)]Br(2) with various mixing ratios. To investigate the competition between the electron correlation of the Ni(III) states (or spin density wave states) and the electron-phonon interaction of the Pd(II)-Pd(IV) mixed-valence states (or charge density wave states) in the Ni-Pd mixed-metal compounds, IR, Raman, ESR, XP, and Auger spectra have been measured. The IR, resonance Raman, XP, and Auger spectra show that the Pd(II)-Pd(IV) mixed-valence states are influenced and gradually approach the Pd(III) states with the increase of the Ni(III) components.
View Article and Find Full Text PDFA series of quasi-one-dimensional halogen-bridged Ni(III) complexes, [Ni(chxn)(2)X]Y(2) (chxn = 1R,2R-diaminocyclohexane; X = Cl, Br, and mixed halides; Y = Cl, Br, mixed halides, NO(3), BF(4), and ClO(4)) have been synthesized in order to investigate the effect of the bridging halogens and counteranions on their crystal, electronic structures, and moreover the spin density wave strengths. In the crystal structures, the [Ni(chxn)(2)] moieties are symmetrically bridged by halogen ions, forming linear-chain Ni(III)-X-Ni(III) structures. The hydrogen bonds between the aminohydrogens of chxn and the counteranions are constructed not only along the chains but also over the chains, forming the two-dimensional hydrogen-bond networks.
View Article and Find Full Text PDF