The allometry of the pipe model quantifies the approximate proportionality between the tree leaf amount and the stem cross-sectional area at the crown base (A). It is useful for estimating and modeling carbon fixation abilities of trees but requires climbing the tree and is thus unsuitable for large-scale studies. Here, we adopted a previously proposed allometry (hereafter the quasi-pipe (qPipe) model allometry) formulating the relationship between the tree leaf amount and a surrogate of A, A, calculated from tree dimensions measurable from the ground.
View Article and Find Full Text PDFTo evaluate the distribution of radiocesium (Cs) among crown positions in trees after the Fukushima Daiichi Nuclear Power Plant accident, we collected foliage and branch samples from different crown positions of four major tree species (Chamaecyparis obtusa, Cryptomeria japonica, Pinus densiflora, and Quercus serrata) from 2011 to 2019 in northeast Japan. We divided the samples into current-year and more than 1-year-old groups (called old foliage and old branches), which sometimes included directly contaminated parts. The Cs activity concentration in dry foliage and branches was measured using a germanium semiconductor detector.
View Article and Find Full Text PDFWe studied seasonal changes in radiocesium (Cs) activity and potassium concentrations in current-year leaves and branches of Pinus densiflora (naturally regenerated saplings), Cryptomeria japonica (planted saplings) and Quercus serrata (planted saplings and coppice shoots) in Fukushima, Japan. We collected current-year shoots from 10 individuals of each species over two growing seasons at intervals of 1-4 months, between June 2016 and December 2017. For the deciduous species Q.
View Article and Find Full Text PDFTo elucidate the temporal changes in the radiocesium distribution in forests contaminated by the Fukushima Daiichi Nuclear Power Plant accident, we monitored the Cs concentration and inventory within forests from 2011 to 2015 across nine plots containing variable tree species and different contamination levels. The Cs concentrations in needles and branches decreased exponentially at all coniferous plots, with effective ecological half-lives of 0.45-1.
View Article and Find Full Text PDFLeaf respiration (R) is a major component of carbon balance in forest ecosystems. Clarifying the variability of leaf R within a canopy is essential for predicting the impact of global warming on forest productivity and the potential future function of the forest ecosystem as a carbon sink. We examined vertical and seasonal variations in short-term temperature responses of leaf R as well as environmental factors (light and mean air temperature) and physiological factors [leaf nitrogen (N), leaf mass per area (LMA), and shoot growth] in the canopy of a 10-year-old stand of hinoki cypress [Chamaecyparis obtusa (Sieb.
View Article and Find Full Text PDFIn Amazonian non-flooded forests with a moderate dry season, many trees do not form anatomically definite annual rings. Alternative indicators of annual rings, such as the oxygen (δ(18)Owc) and carbon stable isotope ratios of wood cellulose (δ(13)Cwc), have been proposed; however, their applicability in Amazonian forests remains unclear. We examined seasonal variations in the δ(18)Owc and δ(13)Cwc of three common species (Eschweilera coriacea, Iryanthera coriacea, and Protium hebetatum) in Manaus, Brazil (Central Amazon).
View Article and Find Full Text PDFAfter the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, information about stand-level spatial patterns of radiocesium initially deposited in the surrounding forests was essential for predicting the future dynamics of radiocesium and suggesting a management plan for contaminated forests. In the first summer (approximately 6 months after the accident), we separately estimated the amounts of radiocesium ((134)Cs and (137)Cs; Bq m(-2)) in the major components (trees, organic layers, and soils) in forests of three sites with different contamination levels. For a Japanese cedar (Cryptomeria japonica) forest studied at each of the three sites, the radiocesium concentration greatly differed among the components, with the needle and organic layer having the highest concentrations.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2010
The scaling of respiratory metabolism with body mass is one of the most pervasive phenomena in biology. Using a single allometric equation to characterize empirical scaling relationships and to evaluate alternative hypotheses about mechanisms has been controversial. We developed a method to directly measure respiration of 271 whole plants, spanning nine orders of magnitude in body mass, from small seedlings to large trees, and from tropical to boreal ecosystems.
View Article and Find Full Text PDF