Fasiglifam, a potent and highly selective agonist of G protein-coupled receptor 40, was developed for the treatment of type 2 diabetes mellitus. However, phase III clinical programs were terminated owing to liver safety concerns. Fasiglifam-related liver toxicity was also observed in repeat-dose dog toxicology studies, characterized by granulomatous inflammation with crystal formation in the liver and/or bile ducts.
View Article and Find Full Text PDFThe pharmacokinetics of TAK-272 (SCO-272), an orally active renin inhibitor, was investigated in rats with subcutaneously injected turpentine oil, which was an inflammation animal model. Following intravenous administration of TAK-272 to the turpentine-treated rats, the systemic clearance and volume of distribution decreased with the elevated plasma α-acid glycoprotein (AGP) levels. The elevated plasma AGP levels were negatively correlated with the plasma unbound fraction of TAK-272 in the rats.
View Article and Find Full Text PDFIn the search for orally available drugs, the prediction of human pharmacokinetics (PK) is essential for successfully selecting compounds that will be clinically useful. This report describes the selection of TAK-272 (SCO-272), a novel orally active renin inhibitor, as a clinical candidate via the detailed investigation of nonclinical PK data and human PK prediction. The bioavailability (BA) of TAK-272 after oral administration to rats and monkeys was low, especially in fasted monkeys, and the systemic exposure of TAK-272 was highly variable in monkeys.
View Article and Find Full Text PDFFasiglifam (TAK-875), a Free Fatty Acid Receptor 1 (FFAR1) agonist in development for the treatment of type 2 diabetes, was voluntarily terminated in phase 3 due to adverse liver effects. A mechanistic investigation described in this manuscript focused on the inhibition of bile acid (BA) transporters as a driver of the liver findings. TAK-875 was an in vitro inhibitor of multiple influx (NTCP and OATPs) and efflux (BSEP and MRPs) hepatobiliary BA transporters at micromolar concentrations.
View Article and Find Full Text PDFPrevious studies on the metabolic fate of resatorvid (TAK-242) have shown that species differences in the pharmacokinetics of 4-amino-3-chlorophenyl hydrogen sulfate (M-III), a metabolite of TAK-242, between rats and dogs are mainly attributable to the urinary excretion process. In the present study, the renal uptake mechanism of M-III was investigated using kidney slices and Xenopus laevis oocytes expressing rat organic anion transporter 1 (rOat1; Slc22a6) and rOat3 (Slc22a8). The uptake of p-aminohippuric acid (PAH), a substrate for Oats, by kidney slices from rats and dogs increased at 37 °C and M-III inhibited the uptake.
View Article and Find Full Text PDFThe absorption process in animals of TAK-491, designed as ester-based prodrug with medoxomil moiety, was evaluated. In the plasma of rats and dogs, TAK-536, the pharmacologically active metabolite, was present as the main component with hardly detectable concentrations of TAK-491 after oral administration of TAK-491. In the rat portal plasma, TAK-536 was also present as the main component with hardly detectable concentrations of TAK-491 after jejunal loop injection of TAK-491, suggesting TAK-491 was absorbed from small intestine and hydrolyzed almost completely during absorption.
View Article and Find Full Text PDFBiopharm Drug Dispos
September 2008
The role of P-glycoprotein (P-gp, ABCB1) on the absorption process was investigated by drug-drug interaction studies of TAK-427 with P-gp inhibitors (erythromycin, ketoconazole or quinidine) in rats and by transport studies using rat multidrug resistance (MDR1) stably expressing cells and rat small intestine mounted in a Ussing-type chamber. TAK-427 showed high efflux activity with low permeability in rat MDR1a and MDR1b stably expressing cells and was revealed to be a typical substrate for P-gps. Although TAK-427 was mainly absorbed from the small intestine in rats, a large part of the dosed compound remained in the gastrointestinal tract.
View Article and Find Full Text PDFPurpose: Stable transformants expressing human multidrug resistance 1 (MDR1), monkey MDR1, canine MDR1, rat MDR1a, rat MDR1b, mouse mdr1a, and mouse mdr1b in LLC-PK1 were established to investigate species differences in P-glycoprotein (P-gp, ABCB1) mediated efflux activity.
Methods: The seven cDNAs of MDR1 from five animals were cloned, and their transformants stably expressing the series of MDR1 in LLC-PK1 were established. Transport studies of clarithromycin, daunorubicin, digoxin, erythromycin, etoposide, paclitaxel, propranolol, quinidine, ritonavir, saquinavir, verapamil, and vinblastine were performed by using these cells, and efflux activity was compared among the species.
The human multidrug resistance protein MRP1 and its homolog, MRP2, are both thought to be involved in cancer drug resistance and the transport of a wide variety of organic anions, including the cysteinyl leukotriene C4 (LTC4) (Km = 0.1 and 1 microm). To determine which domain of these proteins is associated with substrate specificity and subcellular localization, we constructed various chimeric MRP1/MRP2 molecules and expressed them in polarized mammalian LLC-PK1 cells.
View Article and Find Full Text PDFDubin-Johnson syndrome (DJS) is a hereditary disease characterized by hyperbilirubinemia. We investigated the consequences of 2 missense mutations, R768W and Q1382R, of nucleotide-binding domains (NBDs) of the multidrug resistance protein 2 (MRP2; ABCC2) that were previously identified in patients with DJS. Pulse chase analysis revealed that the precursor form of the wild-type and Q1382R MRP2 were converted to the mature form, which is resistant to endoglycosidase H (Endo H) in about 60 minutes.
View Article and Find Full Text PDF