Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells abundant in human tissues that play a significant role in defense against bacterial and viral infections and in tissue repair. MAIT cells are activated by recognizing microbial-derived small-molecule ligands presented by the MHC class I related-1 protein. Although several MAIT cell modulators have been identified in the past decade, potent and chemically stable ligands remain limited.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells are innate-like T cells that are modulated by ligands presented on MHC class I-related proteins (MR1). These cells have attracted attention as potential drug targets because of their involvement in the initial response to infection and various disorders. Herein, we have established the MR1 presentation reporter assay system employing split-luciferase, which enables the efficient exploration of MR1 ligands.
View Article and Find Full Text PDFRecently, various metabolites derived from host microbes have been reported to modulate the immune system, with potential involvement in health or diseases. Archaea, prokaryotic organisms, are present in the human body, but their connection with the host is largely unknown when compared to other microorganisms such as bacteria. This study focused on unique glycerolipids from symbiotic methanogenic archaea and evaluated their activities toward an innate immune receptor.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells are an abundant subset of innate-like T lymphocytes. MAIT cells are activated by microbial riboflavin-derived antigens, such as 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU), when presented by the major histocompatibility complex (MHC) class I-related protein (MR1). We have synthesized all stereoisomers of 5-OP-RU to investigate the effects of its stereochemistry on the MR1-dependent MAIT cell activation and MR1 upregulation.
View Article and Find Full Text PDFA total synthesis of polyoxamic acid has been achieved. The key feature of the synthetic route is a visible-light-mediated β-scission and carbon-to-carbon 1,5-hydrogen atom transfer (1,5-HAT) to provide the functionalized alditol under mild conditions. This type of carbon-to-carbon 1,5-HAT initiated by C(sp)-centered radicals has been scarcely reported.
View Article and Find Full Text PDF