Infrared (IR) spectra are measured for Ag(+)(NH(3))(n) with n = 3-8 in the NH-stretch region using photodissociation spectroscopy. The spectra of n = 3 and 4 exhibit absorption features only near the frequencies of the isolated NH(3), indicating that every NH(3) molecule is coordinated individually to Ag(+). For n >or= 5, the occupation of the second shell is evidenced by lower-frequency features characteristic of hydrogen bonding between NH(3) molecules.
View Article and Find Full Text PDFCoordination and solvation structures of the Cu(+)(NH(3))(n) ions with n = 3-8 are studied by infrared photodissociation spectroscopy in the NH-stretch region with the aid of density functional theory calculations. Hydrogen bonding between NH(3) molecules is absent for n = 3, indicating that all NH(3) molecules are bonded directly to Cu(+) in a tri-coordinated form. The first sign of hydrogen bonding is detected at n = 4 through frequency reduction and intensity enhancement of the infrared transitions, implying that at least one NH(3) molecule is placed in the second solvation shell.
View Article and Find Full Text PDFM(+)(H(2)O)(n) and M(+)(H(2)O)(n)Ar ions (M=Cu and Ag) are studied for exploring coordination and solvation structures of noble-metal ions. These species are produced in a laser-vaporization cluster source and probed with infrared (IR) photodissociation spectroscopy in the OH-stretch region using a triple quadrupole mass spectrometer. Density functional theory calculations are also carried out for analyzing the experimental IR spectra.
View Article and Find Full Text PDF