Publications by authors named "Takunori Ueda"

To date, various immobilized chiral stationary phases (CSPs) have been developed. The immobilized CSPs have opened up possibilities not only maintaining the high chiral recognition abilities as well as corresponding coated ones but also affording high durability to various mobile phase. This report directed to investigate enantioseparation of recently launched four immobilized CSPs with cellulose and amylose backbones under normal phase liquid chromatography conditions.

View Article and Find Full Text PDF

A 1:1 supramolecular complex (met-hemoCD) of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinatoiron(III) (Fe(III)TPPS) with a per-O-methylated β-cyclodextrin dimer having a -SCH2PyCH2S- (Py = pyridin-3,5-diyl) linker (Py3CD) reacted rapidly with hydrogen peroxide or cumene hydroperoxide in an aqueous solution forming two types of hydroperoxo or alkylperoxo intermediates, ROO-Fe(III)(OH(-))PCD and ROO-Fe(III)(Py)PCD, which underwent rapid homolysis to the corresponding ferryloxo species, namely, O═Fe(IV)(OH(-))PCD and O═Fe(IV)(Py)PCD, respectively. For the O═Fe(IV)(OH(-))PCD species, the iron-oxo oxygen facing the linker gradually transferred to the nearby sulfide bond on the linker, forming the sulfoxidized Py3CD (Py3CD-O)/Fe(II)TPPS complex, which then bound dioxygen in air forming an oxy-ferrous complex, O2-Fe(II)TPPS/Py3CD-O. In contrast, the O═Fe(IV)(Py)PCD species, in which the iron-oxo oxygen was located on the opposite side of the sulfide bond on the linker across the porphyrin ring, was reduced to the resting state (met-hemoCD) by the surroundings without any oxidation of the Py3CD linker.

View Article and Find Full Text PDF

A synthetic oxygen (O(2)) and carbon monoxide (CO) receptor (hemoCD) composed of 5,10,15,20-tetrakis(4-sulfonatophenyl)porphinatoiron(ii) and a per-O-methylated β-cyclodextrin dimer with a pyridine linker (Py3CD) was functionalised with poly(ethylene glycol) (PEG) to elongate the circulation time of the receptor in the bloodstream. α-PEG monocarboxylic acid (HOOC(CH(2))(3)(CO)O-PEG(mw)-OCH(3); mw = 750 or 5k) or α,ω-PEG dicarboxylic acid (HOOC(CH(2))(3)(CO)O-PEG(mw)-O(CO)(CH(2))(3)COOH; mw = 10k or 20k) was reacted with the amino group of 5-(4-aminophenyl)-10,15,20-tris(4-sulfonatophenyl)porphyrin to afford a porphyrin monomer having a PEG chain or a porphyrin dimer having a PEG linker, respectively. The ferrous complexes of these PEGylated porphyrins (PEG750-, PEG5k-, PEG10k- and PEG20k-hemoCDs) bound O(2) in aqueous solution, P(1/2) values being 6.

View Article and Find Full Text PDF

Poly(acrylic acid) (PAA) is modified by 5-(4-β-alanylaminophenyl)-10,15,20-tris(4-sulfonatophenyl) porphinatoiron(III) to yield iron porphyrin-bearing PAAs (FeP(n)s) through a condensation reaction. FeP(n)s were further functionalized by Py3CD, which is a per-O-methylated β-cyclodextrin (CD) dimer with a pyridine linker and includes the porphyrin pendants to form ferric hemoCD-P(n)s. Ferrous hemoCD-P(3), having three porphyrin chromophores in a polymer chain, is shown to bind molecular oxygen (P(1/2)=7.

View Article and Find Full Text PDF

The reaction between H(2)O(2) and a pyridine-coordinated ferric porphyrin encapsulated by a cyclodextrin dimer yielded a hydroperoxoferric porphyrin intermediate, PFe(III)-OOH, which rapidly decomposed to oxoferryl porphyrin (PFe(IV)═O). Upon reaction with H(2)O(2), PFe(IV)═O reverted to PFe(III)-OOH, which was converted to carbon monoxide-coordinated ferrous porphyrin under a CO atmosphere. PFe(IV)═O in the presence of excess H(2)O(2) behaves as PFe(III)-OOH.

View Article and Find Full Text PDF