The power conversion efficiency (PCE) of organic photovoltaics (OPVs) has reached more than 19% due to the rapid development of non-fullerene acceptors (NFAs). To compete with the PCEs (26%) of commercialized silicon-based inorganic photovoltaics, the drawback of OPVs should be minimized. This drawback is the intrinsic large loss of open-circuit voltage; however, a general approach to this issue remains elusive.
View Article and Find Full Text PDFThe development of nonfullerene acceptors (NFAs), represented by ITIC, has contributed to improving the power conversion efficiency (PCE) of organic solar cells (OSCs). Although tuning the electronic structures to reduce the exciton binding energy (E) is considered to promote photocharge generation, a rational molecular design for NFAs has not been established. In this study, we designed and developed two ITIC-based NFAs bearing spiro-substituted bithiophene or biphenyl units (named SpiroT-DCI and SpiroF-DCI) to tune the frontier molecular orbital (FMO) distribution of NFAs.
View Article and Find Full Text PDFPrecise engineering of excited-state interactions between an organic conjugated molecule and a two-dimensional semiconducting inorganic nanosheet, specifically the manipulation of charge-transfer excited (CTE) states, still remains a challenge for state-of-the-art photochemistry. Herein, we report a long-lived, highly emissive CTE state at structurally well-defined hetero-nanostructure interfaces of photoactive pyrene and two-dimensional MoS nanosheets an -benzylsuccinimide bridge (Py-Bn-MoS). Spectroscopic measurements reveal that no charge-transfer state is formed in the ground state, but the locally-excited (LE) state of pyrene in Py-Bn-MoS efficiently generates an unusual emissive CTE state.
View Article and Find Full Text PDFCOA-Cl is a newly synthesized adenosine analogue that exhibits various physiological activities. Its angiogenic, neurotropic, and neuroprotective potencies make it promising for the development of medicines. In this study, we show Raman spectroscopic study of COA-Cl to elucidate molecular vibrations and related chemical properties.
View Article and Find Full Text PDF