Publications by authors named "Takumi Matsuoka"

Metal-nanoparticle (NP)/metal-organic framework (MOF) composites have attracted considerable attention as heterogeneous catalysts. Compared with porous carbon, silica, and alumina, the charge-transfer interaction between the metal NPs and the MOF accelerated the catalytic activity. In this study, PdRu bimetallic NPs were successfully immobilized on MOFs such as MIL-101(Cr) by using supercritical carbon dioxide.

View Article and Find Full Text PDF

Elucidating the fouling phenomena of polymer surfaces will facilitate the molecular design of high-performance biomedical devices. Here, we investigated the remarkable antifouling properties of two acrylate materials, poly(2-methoxyethyl acrylate) (PMEA) and poly(3-methoxypropionic acid vinyl ester) (PMePVE), which have a terminal methoxy group on the side chain, via molecular dynamics simulations of binary mixtures of acrylate/methacrylate trimers with -pentane or 2,2-dimethylpropane (neopentane), that serve as the nonpolar organic probe (organic foulants). The second virial coefficient () was determined to assess the aggregation/dispersion properties in the binary mixtures.

View Article and Find Full Text PDF

Improving hydrophilicity is a key factor for enhancing the biocompatibility of polymer surfaces. Nevertheless, previous studies have reported that poly(2-methoxyethyl acrylate) (PMEA) surfaces demonstrate markedly better biocompatibility than more hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) surfaces. In this work, the origins of the excellent biocompatibility of the PMEA surface are investigated using molecular dynamics (MD) simulations of simplified binary mixtures of acrylate/methacrylate trimers and organic solvents, with -nonane, 1,5-pentanediol, or 1-octanol serving as the probe organic foulants.

View Article and Find Full Text PDF