The antiscaling properties of multiwalled carbon nanotube (MWCNT)-polyamide (PA) nanocomposite reverse-osmosis (RO) desalination membranes (MWCNT-PA membranes) were studied. An aqueous solution of calcium chloride (CaCl) and sodium bicarbonate (NaHCO) was used to precipitate in situ calcium carbonate (CaCO) to emulate scaling. The MWCNT contents of the studied nanocomposite membranes prepared by interfacial polymerization ranged from 0 wt % (plain PA) to 25 wt %.
View Article and Find Full Text PDFCarbon nanomaterials are robust and possess fascinating properties useful for separation technology applications, but their scalability and high salt rejection when in a strong cross flow for long periods of time remain challenging. Here, we present a graphene-based membrane that is prepared using a simple and environmentally friendly method by spray coating an aqueous dispersion of graphene oxide/few-layered graphene/deoxycholate. The membranes were robust enough to withstand strong cross-flow shear for a prolonged period (120 h) while maintaining NaCl rejection near 85% and 96% for an anionic dye.
View Article and Find Full Text PDFWe demonstrate efficient antifouling and low protein adhesion of multiwalled carbon nanotubes-polyamide nanocomposite (MWCNT-PA) reverse-osmosis (RO) membranes by combining experimental and theoretical studies using molecular dynamics (MD) simulations. Fluorescein isothiocyanate (FITC)-labeled bovine serum albumin (FITC-BSA) was used for the fouling studies. The fouling was observed in real time by using a crossflow system coupled to a fluorescence microscope.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2016
Shortly after the discovery of fullerenes, many researchers pointed out that carbon nanotubes could be considered as elongated fullerenes. However, the detailed formation mechanism for both structures has been a topic of debate for several years, and consequently it has been difficult to draw a clear connection between the two systems. While the synthesis conditions appear to be different for both fullerenes and nanotubes, here, we demonstrate that it is highly likely that, at an initial growth stage, single-walled carbon nanotubes begin to grow from a hemisphere-like fullerene cap.
View Article and Find Full Text PDFCarbon nanotubes/polyamide (PA) nanocomposite thin films have become very attractive as reverse osmosis (RO) membranes. In this work, we used molecular dynamics to simulate the influence of single walled carbon nanotubes (SWCNTs) in the polyamide molecular structure as a model case of a carbon nanotubes/polyamide nanocomposite RO membrane. It was found that the addition of SWCNTs decreases the pore size of the composite membrane and increases the Na and Cl ion rejection.
View Article and Find Full Text PDFClean water obtained by desalinating sea water or by purifying wastewater, constitutes a major technological objective in the so-called water century. In this work, a high-performance reverse osmosis (RO) composite thin membrane using multi-walled carbon nanotubes (MWCNT) and aromatic polyamide (PA), was successfully prepared by interfacial polymerization. The effect of MWCNT on the chlorine resistance, antifouling and desalination performances of the nanocomposite membranes were studied.
View Article and Find Full Text PDF