Publications by authors named "Takuma Tanaka"

Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing.

View Article and Find Full Text PDF

Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing.

View Article and Find Full Text PDF

Introduction: In Japan, patients with coronavirus disease 2019 (COVID-19) who do not require medical intervention are provided care in recovery accommodation facilities (RAFs). However, some patients may require hospitalization if their symptoms become more severe during their stay. We conducted an observational study using epidemiological data of patients with COVID-19 admitted to RAFs in Tokyo.

View Article and Find Full Text PDF

Noradrenergic neurons in the locus coeruleus (LC) release noradrenaline (NA) that acts volume transmission to activate extrasynaptic G-protein coupled receptors (GPCRs) in target cells throughout the brain. As the closest projection, the dorsal LC laterally adjoins the mesencephalic trigeminal nucleus (MTN), in which proprioceptive primary sensory neurons innervating muscle spindles of jaw-closing muscles are exceptionally located. MTN neurons express α-adrenergic receptors (α-ARs) and display hyperpolarization-activated cyclic nucleotide-gated (HCN) currents (Ihs), which is downregulated by α-AR activation.

View Article and Find Full Text PDF

In 2017, Shiga University established the Faculty of Data Science, which was the first faculty in Japan specializing in data science and statistics. This paper reports the Faculty's historical context, curricula, and collaboration with industry and other universities. The career paths of the graduates and the massive open online courses and textbooks provided by the Faculty of Data Science are also summarized.

View Article and Find Full Text PDF

Interactions between the client (Cl) and therapist (Th) evolve therapeutic relationships in psychotherapy. An interpersonal link or therapeutic space is implicitly developed, wherein certain important elements are expressed and shared. However, neural basis of psychotherapy, especially of non-verbal modalities, have scarcely been explored.

View Article and Find Full Text PDF

The cerebral cortex, basal ganglia and motor thalamus form circuits important for purposeful movement. In Parkinsonism, basal ganglia neurons often exhibit dysrhythmic activity during, and with respect to, the slow (∼1 Hz) and beta-band (15-30 Hz) oscillations that emerge in cortex in a brain state-dependent manner. There remains, however, a pressing need to elucidate the extent to which motor thalamus activity becomes similarly dysrhythmic after dopamine depletion relevant to Parkinsonism.

View Article and Find Full Text PDF
Article Synopsis
  • * This heat treatment led to grain growth and reduced residual stress, which decreased tensile strength and increased elongation, but ultimately degraded low cycle fatigue life.
  • * Electron backscattered diffraction (EBSD) analysis showed that heat treatment caused deformation in the grains, verifying the degree of fatigue damage among the specimens tested.
View Article and Find Full Text PDF

In this study, we investigate the flow of money among bank accounts possessed by firms in a region by employing an exhaustive list of all the bank transfers in a regional bank in Japan, to clarify how the network of money flow is related to the economic activities of the firms. The network statistics and structures are examined and shown to be similar to those of a nationwide production network. Specifically, the bowtie analysis indicates what we refer to as a "walnut" structure with core and upstream/downstream components.

View Article and Find Full Text PDF

Phase oscillator systems with global sine coupling are known to exhibit low-dimensional dynamics. In this paper, such characteristics are extended to phase oscillator systems driven by Cauchy noise. The low-dimensional dynamics solution agreed well with the numerical simulations of noise-driven phase oscillators in the present study.

View Article and Find Full Text PDF

Estimating the percentages of undiagnosed and asymptomatic patients is essential for controlling the outbreak of SARS-CoV-2, and for assessing any strategy for controlling the disease. In this paper, we propose a novel analysis based on the birth-death process with recursive full tracing. We estimated the numbers of undiagnosed symptomatic patients and the lower bound of the number of total infected individuals per diagnosed patient before and after the declaration of the state of emergency in Hokkaido, Japan.

View Article and Find Full Text PDF

Indirect pathway medium-sized spiny neurons (iMSNs) in the neostriatum are well known to project to the external segment of the globus pallidus (GPe). Although direct MSNs (dMSNs) also send axon collaterals to the GPe, it remains unclear how dMSNs and iMSNs converge within the GPe. Here, we selectively labeled neighboring dMSNs and iMSNs with green and red fluorescent proteins using an adeno-associated virus vector and examined axonal projections of dMSNs and iMSNs to the GPe in mice.

View Article and Find Full Text PDF
Article Synopsis
  • * This study analyzes how optimizing RNNs with a method called recurrent infomax (RI) can enhance their information processing capabilities.
  • * Results show that RI creates a delay-line structure in RNNs, significantly improving their short-term memory for processing temporal information.
View Article and Find Full Text PDF

Current sinks and sources spatially separated between the apical and basal dendrites have been believed to be essential in generating local field potentials (LFPs). According to this theory, LFPs would not be large enough to be observed in the regions without laminar structures, such as striatum and thalamus. However, LFPs are experimentally recorded in these regions.

View Article and Find Full Text PDF
Article Synopsis
  • Rodents use their whiskers (vibrissae) to gather spatial information by actively moving them, with motor control in the brain being essential for this movement.
  • Research on awake, head-fixed rats showed that different types of neurons in the motor cortex have distinct firing patterns related to whisker movement.
  • Neurons projecting to the brainstem are more active during strong whisker movements, while those connected to the opposite side of the brain (corticocallosal) fire more during small movements or rest, indicating differing roles in motor control.
View Article and Find Full Text PDF

Glutamatergic dendritic EPSPs evoked in cortical pyramidal neurons are depressed by activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels expressed in dendritic spines. This depression has been attributed to shunting effects of HCN current () on input resistance or deactivation. Primary sensory neurons in the rat mesencephalic trigeminal nucleus (MTN) have the somata covered by spine-like microvilli that express HCN channels.

View Article and Find Full Text PDF

Massive corticothalamic afferents originating from layer 6a of primary sensory cortical areas modulate sensory responsiveness of thalamocortical neurons and are pivotal for shifting neuronal firing between burst and tonic modes. The influence of the corticothalamic pathways on the firing mode and sensory gain of thalamic neurons has only been extensively examined in anesthetized animals, but has yet to be established in the awake state. We made lesions of the rat barrel cortex and on the following day recorded responses of single thalamocortical and thalamic reticular neurons to a single vibrissal deflection in the somatosensory system during wakefulness.

View Article and Find Full Text PDF

Phospholipase C-related catalytically inactive proteins (PRIP-1/2) are previously reported to be involved in the membrane trafficking of GABAA receptor (GABAAR) and the regulation of intracellular Ca(2+) stores. GABAAR-mediated currents can be regulated by the intracellular Ca(2+). However, in PRIP-1/2 double-knockout (PRIP-DKO) mice, it remains unclear whether the kinetic properties of GABAARs are modulated by the altered regulation of intracellular Ca(2+) stores.

View Article and Find Full Text PDF

We propose models and a method to qualitatively explain the receptive field properties of complex cells in the primary visual cortex. We apply a learning method based on the information maximization principle in a feedforward network, which comprises an input layer of image patches, simple cell-like first-output-layer neurons, and second-output-layer neurons (Model 1). The information maximization results in the emergence of the complex cell-like receptive field properties in the second-output-layer neurons.

View Article and Find Full Text PDF

We previously showed that a positive covariability between intracortical excitatory synaptic actions onto the two layer three pyramidal cells (PCs) located in mutually adjacent columns is changed into a negative covariability by column-wise presynaptic inhibition of intracortical inputs, implicated as a basis for the desynchronization of inter-columnar synaptic actions. Here we investigated how the inter-columnar desynchronization is modulated by the strength of presynaptic inhibition or other factors, by using a mathematical model. Based on our previous findings on the paired-pulse depression (PPD) of intracortical excitatory postsynaptic currents (EPSCs) evoked in PCs located in the stimulated home column (HC) but no PPD in PCs located in the adjacent column (AC), a mathematical model of synaptic connections between PCs and inhibitory interneurons was constructed.

View Article and Find Full Text PDF

We propose a new principle for replicating receptive field properties of neurons in the primary visual cortex. We derive a learning rule for a feedforward network, which maintains a low firing rate for the output neurons (resulting in temporal sparseness) and allows only a small subset of the neurons in the network to fire at any given time (resulting in population sparseness). Our learning rule also sets the firing rates of the output neurons at each time step to near-maximum or near-minimum levels, resulting in neuronal reliability.

View Article and Find Full Text PDF

To examine inputs to parvalbumin (PV)-producing interneurons, we generated transgenic mice expressing somatodendritic membrane-targeted green fluorescent protein specifically in the interneurons, and completely visualized their dendrites and somata. Using immunolabeling for vesicular glutamate transporter (VGluT)1, VGluT2, and vesicular GABA transporter, we found that VGluT1-positive terminals made contacts 4- and 3.1-fold more frequently with PV-producing interneurons than VGluT2-positive and GABAergic terminals, respectively, in the primary somatosensory cortex.

View Article and Find Full Text PDF

Three-body interactions have been found in physics, biology, and sociology. To investigate their effect on dynamical systems, as a first step, we study numerically and theoretically a system of phase oscillators with a three-body interaction. As a result, an infinite number of multistable synchronized states appear above a critical coupling strength, while a stable incoherent state always exists for any coupling strength.

View Article and Find Full Text PDF

The phase order parameter of oscillators on a network is optimized using two different sets of constraints. First, the maximization is achieved by adjusting the coupling strengths among the oscillators without changing the total coupling strength and the natural frequencies of the oscillators. This optimization reveals that a stronger weight tends to be assigned to a connection between two oscillators with greatly different natural frequencies.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Takuma Tanaka"

  • Takuma Tanaka's recent research primarily investigates the functional diversity of dopamine axons in the prefrontal cortex, focusing on how dopaminergic signaling affects neural processing during both rewarding and aversive situations.
  • His work also encompasses the examination of risk factors for hospitalization in patients with mild COVID-19, using epidemiological data to inform public health strategies.
  • Furthermore, Tanaka's studies span the field of neurobiology, exploring topics like noradrenergic volume transmission and the impact of dopamine depletion on motor thalamus dynamics within the context of Parkinsonism.