The solute urea has been used extensively as a denaturant in protein folding studies; double-stranded nucleic acid structures are also destabilized by urea, but comparatively less than proteins. In previous research, the solute has been shown to strongly destabilize folded G-quadruplex DNA structures. This contribution demonstrates the stabilizing effect of urea on the G-quadruplex formed by the oligodeoxyribonucleotide (ODN), G3T (d[5'-GGGTGGGTGGGTGGG-3']), and related sequences in the presence of sodium or potassium cations.
View Article and Find Full Text PDFThe G-quadruplex (GQ), a tetrahelix formed by guanine-rich nucleic acid sequences, is a potential drug target for several diseases. Monomolecular GQs are stabilized by guanine tetrads and non-guanine regions that form loops. Hydrostatic pressure destabilizes the folded, monomolecular GQ structures.
View Article and Find Full Text PDFWe report the effect of dimethyl sulfoxide (DMSO) on the stability of the four-stranded structures formed by the oligodeoxyribonucleotides d[5'-AGGG(TTAGGG)-3'] (HTel), d[5'-(GGGT)GGG-3'] (G3T), d[5'-GGTTGGTGTGGTTGG-3] (TBA), d[5'-GGGGTTTTGGGG-3'] (Oxy-1.5), and d[5'-TGGGGT-3'] (TG4T). In these measurements, influence of the co-solvent was assessed by the change in the mid-point of the heat-induced unfolding, T, by monitoring the change in the UV absorption of the sample.
View Article and Find Full Text PDFThe kinetic and thermodynamic stabilities of G-quadruplex structures have been extensively studied. In contrast, systematic investigations of the volumetric properties of G-quadruplexes determining their pressure stability are still relatively scarce. The G-rich strand from the promoter region of the c-MYC oncogene (G-strand) is known to adopt a range of conformational states including the duplex, G-quadruplex, and coil states depending on the presence of the complementary C-rich strand (C-strand) and solution conditions.
View Article and Find Full Text PDF