Publications by authors named "Takuma Kaneko"

The adsorption behaviors of H and CO molecules in crown-motif [PtAu(PPh)]-H[PMoO] (PtAu8-PMo12) solids were investigated by quick-scan X-ray absorption fine structure (QXAFS) measurements with a time resolution of 0.1 s. The electronic state of Pt in PtAu8-PMo12 was drastically changed by the adsorption of H and CO molecules because of the formation of Pt-H/Pt-CO interactions.

View Article and Find Full Text PDF

The O-glycan composition of jellyfish (JF) mucin (qniumucin: Q-mucin) extracted from three Cubozoan species was studied after the optimization of the purification protocol. Application of a stepwise gradient of ionic strength to anion exchange chromatography (AEXC) was effective for isolating Q-mucin from coexisting impurities. In the three species, the amino acid sequence of the tandem repeat (TR) region in Q-mucin in all three Cubozoans seemed to remain the same as that in all Scyphozoans, although their glycan chains seemed to exhibit clear diversity.

View Article and Find Full Text PDF

Hexavalent iridium (Ir) oxide is predicted to be more active and stable than any other iridium oxide for the oxygen evolution reaction in acid; however, its experimental realization remains challenging. In this work, we report the synthesis, characterization, and application of atomically dispersed Ir oxide (Ir-) for proton exchange membrane (PEM) water electrolysis. The Ir- was synthesized by oxidatively substituting the ligands of potassium hexachloroiridate(IV) (KIrCl) with manganese oxide (MnO).

View Article and Find Full Text PDF

Highly efficient, cost-effective, and durable electrocatalysts, capable of accelerating sluggish reaction kinetics and attaining high performance, are essential for developing sustainable energy technologies but remain a great challenge. Here, we leverage a facile heterostructure design strategy to construct atomically thin Os@Pd metallenes, with atomic-scale Os nanoclusters of varying geometries confined on the surface layer of the Pd lattice, which exhibit excellent bifunctional properties for catalyzing both hydrogen evolution (HER) and oxygen reduction reactions (ORR). Importantly, Os@Pd metallenes manifest a low η overpotential of only 11 mV in 1.

View Article and Find Full Text PDF

A mucin-type glycoprotein extracted from various species of jellyfish (JF) is named qniumucin (Q-mucin). Compared with general mucins, most of which are from mammals including humans, Q-mucin can be collected on a relatively large scale with high yield. Owing to its simple structure with low heterogeneity, Q-mucin has a potential to be developed into material mucins which opens various applications valuable to humans.

View Article and Find Full Text PDF

Developing highly efficient multifunctional electrocatalysts is crucial for future sustainable energy  pursuits, but remains a great challenge. Herein, a facile synthetic strategy is used to confine atomically thin Pd-PdO nanodomains to amorphous Ru metallene oxide (RuO ). The as-synthesized electrocatalyst (Pd RuOx-0.

View Article and Find Full Text PDF

Jellyfish (JF) mucin (precisely, a mucin-type glycoprotein named qniumucin: Q-mucin) first discovered in JF is mainly composed of highly O-glycosylated domains, and its unique structure suggests its wide applications as a smart material. In this study, the standard protocol used to date was thoroughly reinvestigated because the processing of raw JF was rather difficult and continuous production from frozen sources was also indispensable. Finally, we concluded that Q-mucin is involved not in mucus but in the mesoglea, i.

View Article and Find Full Text PDF

Aims: Intraductal tubulopapillary neoplasm (ITPN) of the pancreas is a recently recognized pancreatic tumor entity. Here we aimed to determine the most important features with a systematic review coupled with an integrated statistical approach.

Methods And Results: PubMed, SCOPUS, and Embase were searched for studies reporting data on pancreatic ITPN.

View Article and Find Full Text PDF

Aldol reactions (self- and cross-aldol condensations) for conjugated enone synthesis were efficiently performed on large-sized Cs single sites (1 wt %) confined in β-zeolite channels in toluene, which showed the highest level of catalytic aldol condensation activity among reported zeolite catalysts. In general, aldol condensation reactions for C-C bond synthesis can proceed by acids (e.g.

View Article and Find Full Text PDF

There is little information on the spatial distribution, migration, and valence of Ce species doped as an efficient radical scavenger in a practical polymer electrolyte fuel cell (PEFC) for commercial fuel cell vehicles (FCVs) closely related to a severe reliability issue for long-term PEFC operation. An three-dimensional fluorescence computed tomography-X-ray absorption fine structure (CT-XAFS) imaging technique and an same-view nano-XAFS-scanning electron microscopy (SEM)/energy-dispersive spectrometry (EDS) combination technique were applied for the first time to perform spatial visualization and depth-profiling analysis of Ce radical scavengers in a practical PEFC of Toyota MIRAI FCV under PEFC operating conditions. Using these techniques, we successfully visualized and analyzed the domain, density, valence, and migration of Ce scavengers that were heterogeneously distributed in the components of PEFC, such as anode microporous layer, anode catalyst layer, polymer electrolyte membrane (PEM), cathode catalyst layer, and cathode microporous layer.

View Article and Find Full Text PDF

Single-atom catalysts (SACs) with nitrogen-coordinated nonprecious metal sites have exhibited inimitable advantages in electrocatalysis. However, a large room for improving their activity and durability remains. Herein, we construct atomically dispersed Fe sites in N-doped carbon supports by secondary-atom-doped strategy.

View Article and Find Full Text PDF

The synchronizing measurements of both cyclic voltammograms (CVs) and real-time quick XAFSs (QXAFSs) for Pt/C cathode electrocatalysts in a membrane electrode assembly (MEA) of polymer electrolyte fuel cells (PEFCs) treated by anode-gas exchange (AGEX) and cathode-gas exchange (CGEX) cycles (startup/shutdown conditions of FC vehicles) were performed for the first time to understand the opposite effects of the AGEX and CGEX treatments on the Pt/C performance and durability and also the contradiction between the electrochemical active surface area (ECSA) decrease and the performance increase by CGEX treatment. While the AGEX treatment decreased both the ECSA and performance of MEA Pt/C due to carbon corrosion, it was found that the CGEX treatment decreased the ECSA but increased the Pt/C performance significantly due to high-index (331) facet formation (high-resolution STEM) and hence the suppression of strongly bound Pt-oxide formation at cathode Pt nanoparticle surfaces. Transient QXAFS time-profile analysis for the MEA Pt/C also revealed a direct relationship between the electrochemical performance or durability and transient kinetics of the Pt/C cathode.

View Article and Find Full Text PDF

Single-atom electrocatalysts (SAEs) can realize the target of low-cost by maximum atomic efficiency. However, they usually suffer performance decay due to high energy states, especially in a harsh acidic water splitting environment. Here, we conceive and realize a double protecting strategy that ensures robust acidic water splitting on Ir SAEs by dispersing Ir atoms in/onto Fe nanoparticles and embedding IrFe nanoparticles into nitrogen-doped carbon nanotubes (Ir-SA@Fe@NCNT).

View Article and Find Full Text PDF

In order to obtain a suitable design policy for the development of a next-generation polymer electrolyte fuel cell, we performed a visualization analysis of Pt and Co species following aging and degradation processes in membrane-electrode assembly (MEA), using a same-view. Nano-X-ray absorption fine structure (XAFS)/Scanning transmission electron microscope (STEM)-energy dispersive X-ray spectroscopy (EDS) technique that we developed to elucidate durability factors and degradation mechanisms of a MEA PtCo/C cathode electrocatalyst with higher activity and durability than a MEA Pt/C. In the MEA PtCo/C, after 5000 ADT-rec (rectangle accelerated durability test) cycles, unlike the MEA Pt/C, there was no oxidation of Pt.

View Article and Find Full Text PDF

Catalytic benzene C-H activation toward selective phenol synthesis with O remains a stimulating challenge to be tackled. Phenol is currently produced industrially by the three-steps cumene process in liquid phase, which is energy-intensive and not environmentally friendly. Hence, there is a strong demand for an alternative gas-phase single-path reaction process.

View Article and Find Full Text PDF

A method enabling the accurate and precise correlation between structures and properties is critical to the development of efficient electrocatalysts. To this end, we developed an integrated single-electrode method (ISM) that intimately couples electrochemical rotating disk electrodes, in situ/operando X-ray absorption fine structures, and aberration-corrected transmission electron microscopy on identical electrodes. This all-in-one method allows for the one-to-one, in situ/operando, and atomic-scale correlation between structures of electrocatalysts with their electrochemical reactivities, distinct from common methods that adopt multisamples separately for electrochemical and physical characterizations.

View Article and Find Full Text PDF

It remains a big challenge to remarkably improve both oxygen reduction reaction (ORR) activity and long-term durability of Pt-M bimetal electrocatalysts simultaneously in the harsh cathode environment toward widespread commercialization of polymer electrolyte fuel cells (PEFC). In this account we found double-promotional effects of carbon micro coil (CMC) support on ORR performance and durability of octahedral Pt Ni nanoparticles (Oh Pt Ni/CMC). The Oh Pt Ni/CMC displayed remarkable improvements of mass activity (MA; 13.

View Article and Find Full Text PDF

It is hard to directly visualize spectroscopic and atomic-nanoscopic information on the degraded Pt/C cathode layer inside polymer electrolyte fuel cell (PEFC). However, it is mandatory to understand the preferential area, sequence, and relationship of the degradations of Pt nanoparticles and carbon support in the Pt/C cathode layer by directly observing the Pt/C cathode catalyst for the development of next-generation PEFC cathode catalysts. Here, the spectroscopic, chemical, and morphological visualization of the degradation of Pt/C cathode electrocatalysts in PEFC was performed successfully by a same-view combination technique of nano-X-ray absorption fine structure (XAFS) and transmission electron microscopy (TEM)/scanning TEM-energy-dispersive spectrometry (EDS) under a humid N atmosphere.

View Article and Find Full Text PDF

Extranodal extension (ENE) of nodal metastasis is defined as the extension of metastatic cells through the nodal capsule into the perinodal tissue. This morphological parameter, recently proposed as an important prognostic factor in different types of malignancy, has not been included in the TNM staging system for non-small cell lung cancer (NSCLC). In this systematic review with meta-analysis, we weighted the prognostic role of ENE in patients with lymph node-positive NSCLC.

View Article and Find Full Text PDF

The extranodal extension (ENE) of nodal metastasis is the extension of neoplastic cells through the nodal capsule into the perinodal adipose tissue. This histological feature has recently been indicated as an important prognostic factor in different types of malignancies; in this manuscript, we aim at defining its role in the prognosis of oesophageal cancer with the tool of meta-analysis. Two independent authors searched SCOPUS and PubMed until 31 August 2015 without language restrictions.

View Article and Find Full Text PDF

Background And Objectives: Lymph node involvement is common in thyroid cancer, but the system of staging does not consider the histological features of lymph node metastases. We conducted a meta-analysis to investigate the prognostic role of extranodal extension (ENE) in thyroid cancer patients.

Methods: We ran PubMed and SCOPUS searches without language restrictions.

View Article and Find Full Text PDF

We have achieved significant improvements for the oxygen reduction reaction activity and durability with new SnO2-nanoislands/Pt3Co/C catalysts in 0.1 M HClO4, which were regulated by a strategic fabrication using a new selective electrochemical Sn deposition method. The nano-SnO2/Pt3Co/C catalysts with Pt/Sn = 4/1, 9/1, 11/1, and 15/1 were characterized by STEM-EDS, XRD, XRF, XPS, in situ XAFS, and electrochemical measurements to have a Pt3Co core/Pt skeleton-skin structure decorated with SnO2 nanoislands at the compressive Pt surface with the defects and dislocations.

View Article and Find Full Text PDF

We have made the first success in the same-view imagings of 2D nano-XAFS and TEM/STEM-EDS under a humid N2 atmosphere for Pt/C cathode catalyst layers in membrane electrode assemblies (MEAs) of polymer electrolyte fuel cells (PEFCs) with Nafion membrane to examine the degradation of Pt/C cathodes by anode gas exchange cycles (start-up/shut-down simulations of PEFC vehicles). The same-view imaging under the humid N2 atmosphere provided unprecedented spatial information on the distribution of Pt nanoparticles and oxidation states in the Pt/C cathode catalyst layer as well as Nafion ionomer-filled nanoholes of carbon support in the wet MEA, which evidence the origin of the formation of Pt oxidation species and isolated Pt nanoparticles in the nanohole areas of the cathode layer with different Pt/ionomer ratios, relevant to the degradation of PEFC catalysts.

View Article and Find Full Text PDF

There is limited information on the mechanism for platinum oxidation and dissolution in Pt/C cathode catalyst layers of polymer electrolyte fuel cells (PEFCs) under the operating conditions though these issues should be uncovered for the development of next-generation PEFCs. Pt species in Pt/C cathode catalyst layers are mapped by a XAFS (X-ray absorption fine structure) method and by a quick-XAFS(QXAFS) method. Information on the site-preferential oxidation and leaching of Pt cathode nanoparticles around the cathode boundary and the micro-crack in degraded PEFCs is provided, which is relevant to the origin and mechanism of PEFC degradation.

View Article and Find Full Text PDF

The spring-type near isogenic line (NIL) of the winter-type barley (Hordeum vulgare ssp. vulgare) var. Hayakiso 2 (HK2) was developed by introducing VERNALIZATION-H1 (Vrn-H1) for spring growth habit from the spring-type var.

View Article and Find Full Text PDF