Publications by authors named "Takuma Kamibe"

The hybrid composed of anisotropic niobate layers modified with MoC nanoparticles is synthesized by multistep reactions. The stepwise interlayer reactions for layered hexaniobate induce selective surface modification at the alternate interlayers, and the following ultrasonication leads to the formation of double-layered nanosheets. The further liquid phase MoC deposition with the double-layered nanosheets leads to the decoration of MoC nanoparticles on the surfaces of the double-layered nanosheets.

View Article and Find Full Text PDF

Lateral size fractionation of niobate nanosheets derived from KNbO·3HO was achieved via phase transfer from the aqueous phase to the 2-butanone phase in a water/2-butanone biphasic system, in which tetra--dodecylammonium (TDDA) bromide was used as a phase transfer reagent. Phase transfer of the nanosheets was observed when the TDDA/[NbO] molar ratios were 0.6 and 1.

View Article and Find Full Text PDF

Double-layered nanosheets containing pH-cleavable polymer networks between two niobate layers were prepared by copolymerization of -isopropylacrylamide and an acid-degradable crosslinker surface-initiated atom transfer radical polymerization on the surface of hydrated interlayers (interlayer I) of KNbO·3HO and subsequent exfoliation by the introduction of tetra--butylammonium (TBA) ions into anhydrous interlayers (interlayer II). Moreover, the double-layered nanosheets were converted into single-layered nanosheets by the cleavage of cross-linking points in polymer networks by lowering pH. Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG) results showed that polymer networks were present, and nanosheets with a thickness of 10.

View Article and Find Full Text PDF