To elucidate R-gene evolution, we compared the genomic compositions and structures of chromosome regions carrying R-gene clusters among cultivated and wild rice species. Map-based sequencing and gene annotation of orthologous genomic regions (1.2 to 1.
View Article and Find Full Text PDFThe 24-nucleotides (nt) phased secondary small interfering RNA (phasiRNA) is a unique class of plant small RNAs abundantly expressed in monocot anthers at early meiosis. Previously, 44 intergenic regions were identified as the loci for longer precursor RNAs of 24-nt phasiRNAs (24-PHASs) in the rice genome. However, the regulatory mechanism that determines spatiotemporal expression of these RNAs has remained elusive.
View Article and Find Full Text PDFHeading date is one of the most important traits in rice breeding. It is governed by multiple genes, including known quantitative trait loci (QTLs). In general, almost all cultivars, including Nipponbare, head early under short-day (SD) conditions, but some cultivars, including Kasalath, head late.
View Article and Find Full Text PDFThe map-based genome sequence of the japonica rice cultivar Nipponbare remains to date as the only monocot genome that has been sequenced to a high-quality level. It has become the reference sequence for understanding the diversity among thousands of rice cultivars and its wild relatives as well as the major cereal crops that comprised the food source for the entire human race. This review focuses on the accomplishments in rice genomics in Japan encompassing the last 10 years which have led into deeper understanding of the genome, characterization of many agronomic traits, comprehensive analysis of the transcriptome, and the map-based cloning of many genes associated with agronomic traits.
View Article and Find Full Text PDFChromosome segment substitution lines (CSSLs) are a powerful alternative for locating quantitative trait loci (QTL), analyzing gene interactions, and providing starting materials for map-based cloning projects. We report the development and characterization of a CSSL library of a U.S.
View Article and Find Full Text PDFUnderstanding the processes that regulate plant sink formation and development at the molecular level will contribute to the areas of crop breeding, food production and plant evolutionary studies. We report the annotation and analysis of the draft genome sequence of the radish Raphanus sativus var. hortensis (long and thick root radish) and transcriptome analysis during root development.
View Article and Find Full Text PDFSeed shattering is an important trait that distinguishes crop cultivars from the wild and weedy species. The genetics of seed shattering was investigated in this study to provide insights into rice domestication and the evolution of weedy rice. Quantitative trait locus (QTL) analysis, conducted in 2 recombinant inbred populations involving 2 rice cultivars and a weedy rice accession of the southern United States, revealed 3-5 QTLs that controlled seed shattering with 38-45% of the total phenotypic variation.
View Article and Find Full Text PDFComparative analysis using available genomic resources within closely related species is an effective way to investigate genomic sequence and structural diversity. Rice (Oryza sativa L.) has undergone significant physiological and morphological changes during its domestication and local adaptation.
View Article and Find Full Text PDFThe Rice Annotation Project Database (RAP-DB, http://rapdb.dna.affrc.
View Article and Find Full Text PDFSoybean [Glycine max (L) Merrill] is one of the most important leguminous crops and ranks fourth after to rice, wheat and maize in terms of world crop production. Soybean contains abundant protein and oil, which makes it a major source of nutritious food, livestock feed and industrial products. In Japan, soybean is also an important source of traditional staples such as tofu, natto, miso and soy sauce.
View Article and Find Full Text PDFRegulation of cytosine methylation in the plant genome is of pivotal in determining the epigenetic states of chromosome regions. Relative tolerance of plant to deficiency in cytosine methylation provides unparalleled opportunities to study the mechanism for regulation of cytosine methylation. The Decrease in DNA Methylation 1 (DDM1) of Arabidopsis thaliana is one of the best characterized plant epigenetic regulators that are necessary for maintenance of cytosine methylation in genomic DNA.
View Article and Find Full Text PDFHere we present the genomic sequence of the African cultivated rice, Oryza glaberrima, and compare these data with the genome sequence of Asian cultivated rice, Oryza sativa. We obtained gene-enriched sequences of O. glaberrima that correspond to about 25% of the gene regions of the O.
View Article and Find Full Text PDFThere is controversy as to whether gene expression is silenced in the functional centromere. The complete genomic sequences of the centromeric regions in higher eukaryotes have not been fully elucidated, because the presence of highly repetitive sequences complicates many aspects of genomic sequencing. We performed resequencing, assembly, and sequence finishing of two P1-derived artificial chromosome clones in the centromeric region of rice (Oryza sativa L.
View Article and Find Full Text PDFCasein kinase II (CK2) is a protein kinase with an evolutionarily conserved function as a circadian clock component in several organisms, including the long-day plant Arabidopsis (Arabidopsis thaliana). The circadian clock component CIRCADIAN CLOCK ASSOCIATED1 (CCA1) is a CK2 target in Arabidopsis, where it influences photoperiodic flowering. In rice (Oryza sativa), a short-day plant, Heading date6 (Hd6) encodes a CK2alpha subunit that delays flowering time under long-day conditions.
View Article and Find Full Text PDFCentromeres are sites for assembly of the chromosomal structures that mediate faithful segregation at mitosis and meiosis. This function is conserved across species, but the DNA components that are involved in kinetochore formation differ greatly, even between closely related species. To shed light on the nature, evolutionary timing and evolutionary dynamics of rice centromeres, we decoded a 2.
View Article and Find Full Text PDFInt J Plant Genomics
July 2010
Rice is one of the most important crops in the world. Although genetic improvement is a key technology for the acceleration of rice breeding, a lack of genome information had restricted efforts in molecular-based breeding until the completion of the high-quality rice genome sequence, which opened new opportunities for research in various areas of genomics. The syntenic relationship of the rice genome to other cereal genomes makes the rice genome invaluable for understanding how cereal genomes function.
View Article and Find Full Text PDFSubtelomeres contain species-specific repetitive sequences. We characterized rice chromosome ends on the basis of the structure of TrsA, a subtelomeric repetitive sequence of rice. Among the 24 chromosome arms, TrsA was arrayed in tandem on the ends of five: 5L, 6S, 8L, 9L, and 12L.
View Article and Find Full Text PDFBackground: Musa species (Zingiberaceae, Zingiberales) including bananas and plantains are collectively the fourth most important crop in developing countries. Knowledge concerning Musa genome structure and the origin of distinct cultivars has greatly increased over the last few years. Until now, however, no large-scale analyses of Musa genomic sequence have been conducted.
View Article and Find Full Text PDFSoybean [Glycine max (L.) Merrill] is the most important leguminous crop in the world due to its high contents of high-quality protein and oil for human and animal consumption as well as for industrial uses. An accurate and saturated genetic linkage map of soybean is an essential tool for studies on modern soybean genomics.
View Article and Find Full Text PDFThe Rice Annotation Project Database (RAP-DB) was created to provide the genome sequence assembly of the International Rice Genome Sequencing Project (IRGSP), manually curated annotation of the sequence, and other genomics information that could be useful for comprehensive understanding of the rice biology. Since the last publication of the RAP-DB, the IRGSP genome has been revised and reassembled. In addition, a large number of rice-expressed sequence tags have been released, and functional genomics resources have been produced worldwide.
View Article and Find Full Text PDFExamination of the genomic sequence of the telomere region makes it possible to understand the evolution of the structure of chromosomal ends. We compared the genomic sequences of 14 chromosomal ends of rice, Oryza sativa, L., on the basis of the variation in TTTAGGG repeats.
View Article and Find Full Text PDF