Background/aim: The widespread use of fifth-generation 5G millimeter-waves (MMW) generates concern about potential adverse health effects. The latest international guidelines for MMW exposure adopt an absorbed power density (APD) of 200 W/m to avoid a local temperature rise of 5°C in human tissues as an operational adverse health effect threshold. However, because APD is estimated by simulations using human tissue models, it is unknown whether a similar value can be confirmed for living tissues.
View Article and Find Full Text PDFThe rapid development of wireless technology has led to widespread concerns regarding adverse human health effects caused by exposure to electromagnetic fields. Temperature elevation in biological bodies is an important factor that can adversely affect health. A thermophysiological model is desired to quantify microwave (MW) induced temperature elevations.
View Article and Find Full Text PDFThis study examined changes in recall accuracy for mobile phone calls over a long period. Japanese students' actual call statuses were monitored for 1 month using software-modified phones (SMPs). Three face-to-face interviews were conducted to obtain information regarding self-reported call status during the monitoring period: first interview: immediately after the monitoring period; second interview: after 10-12 months; third interview: after 48-55 months.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
November 2016
This study aimed to elucidate the recall accuracy of mobile phone calls among young people using new software-modified phone (SMP) technology. A total of 198 Japanese students aged between 10 and 24 years were instructed to use a SMP for 1 month to record their actual call statuses. Ten to 12 months after this period, face-to-face interviews were conducted to obtain the self-reported call statuses during the monitoring period.
View Article and Find Full Text PDFThe biological effects of exposing the developing brain to radiofrequency electromagnetic fields (RF) are still unclear. Our experiments investigated whether three inflammation-related, microcirculatory parameters in juvenile and young adult rats were modified during local cortex exposure to RF under non-thermal conditions. The cortex tissue was locally exposed to 1457 MHz RF at an averaged specific absorption rate of 2.
View Article and Find Full Text PDFLittle information is available about the effects of exposure to radiofrequency electromagnetic fields (RF) on cerebral microcirculation during rat developmental stages. We investigated whether the permeability of the blood-brain barrier (BBB) in juvenile and young adult rats was modified during local cortex exposure to RF under non-thermal conditions. The cortex tissue targeted was locally exposed to 1457 MHz RF at an average specific absorption rate of 2.
View Article and Find Full Text PDFThe aim of this study was to determine whether cerebral microcirculatory parameters in rats were modified during local cortex exposure to a radiofrequency electromagnetic field (RF) under non-thermal conditions. The cortex tissue targeted was locally exposed to 1439 MHz RF using a figure-8 loop antenna at an averaged specific absorption rate of 2.0 W/kg in the target area for 50 min.
View Article and Find Full Text PDFIn this paper, we experimentally demonstrate the excitation of spoof surface plasmon polaritons (SPPs) on a wire-medium metamaterial slab in the microwave region. The spoof SPPs are excited on the opposite side of the slab from the source, which is desirable for applications such as sensing devices. Using the prism coupling method, we verify the excitation of spoof SPPs by measuring the reflection spectrum and near-field enhancement.
View Article and Find Full Text PDFThe dominant effect of human exposures to microwaves is caused by temperature elevation ('thermal effect'). In the safety guidelines/standards, the specific absorption rate averaged over a specific volume is used as a metric for human protection from localized exposure. Further investigation on the use of this metric is required, especially in terms of thermophysiology.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
October 2011
Cellular phones are used in the vicinity of the human head, resulting in localized exposure to this part of the body. To simulate exposure during cellular phone use, microwave energy absorption should be focused within the head region of laboratory animals. In this paper, we developed an exposure system using a figure-8 loop antenna to permit localized exposure of a rat head to 1500-MHz microwave fields, simulating human head exposure to cellular phones.
View Article and Find Full Text PDFFew studies have shown that local exposure to radiofrequency electromagnetic fields (RF) induces intensity-dependent physiological changes, especially in the brain. The aim of the present study was to detect reproducible responses to local RF exposure in the parietal cortex of anesthetized rats and to determine their dependence on RF intensity. The target cortex tissue was locally exposed to 2-GHz RF using a figure-eight loop antenna within a range of averaged specific absorption rates (10.
View Article and Find Full Text PDF