Cardiac fibrosis plays an important role in cardiac remodeling after myocardial infarction (MI). The molecular mechanisms that promote cardiac fibrosis after MI are well studied; however, the mechanisms by which the progression of cardiac fibrosis becomes attenuated after MI remain poorly understood. Recent reports show the role of cellular senescence in limiting tissue fibrosis.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.
View Article and Find Full Text PDFHypertrophic cardiomyopathy (HCM) is a genetic disorder that is characterized by hypertrophy of the myocardium. Some of the patients are diagnosed for HCM during infancy, and the prognosis of infantile HCM is worse than general HCM. Nevertheless, pathophysiology of infantile HCM is less investigated and remains largely unknown.
View Article and Find Full Text PDFBackground: Fabry disease is an X-linked disease caused by mutations in α-galactosidase A (GLA); these mutations result in the accumulation of its substrates, mainly globotriaosylceramide (Gb3). The accumulation of glycosphingolipids induces pathogenic changes in various organs, including the heart, and Fabry cardiomyopathy is the most frequent cause of death in patients with Fabry disease. Existing therapies to treat Fabry disease have limited efficacy, and new approaches to improve the prognosis of patients with Fabry cardiomyopathy are required.
View Article and Find Full Text PDFThe DNA damage response (DDR) plays a pivotal role in maintaining genome integrity. DNA damage and DDR activation are observed in the failing heart, however, the type of DNA damage and its role in the pathogenesis of heart failure remain elusive. Here we show the critical role of DNA single-strand break (SSB) in the pathogenesis of pressure overload-induced heart failure.
View Article and Find Full Text PDFActivation of β-catenin-dependent canonical Wnt signaling in endothelial cells plays a key role in angiogenesis during development and ischemic diseases, however, other roles of Wnt/β-catenin signaling in endothelial cells remain poorly understood. Here, we report that sustained activation of β-catenin signaling in endothelial cells causes cardiac dysfunction through suppressing neuregulin-ErbB pathway in the heart. Conditional gain-of-function mutation of β-catenin, which activates Wnt/β-catenin signaling in Bmx-positive arterial endothelial cells (Bmx/CA mice) led to progressive cardiac dysfunction and 100% mortality at 40 weeks after tamoxifen treatment.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene which encodes dystrophin protein. Dystrophin defect affects cardiac muscle as well as skeletal muscle. Cardiac dysfunction is observed in all patients with DMD over 18 years of age, but there is no curative treatment for DMD cardiomyopathy.
View Article and Find Full Text PDFBackground: There are changes in the skeletal muscle of patients with chronic heart failure (CHF), such as volume reduction and fiber type shift toward fatigable type IIb fiber. Forkhead box O (FoxO) signaling plays a critical role in the development of skeletal myopathy in CHF, and functional interaction between FoxO and the Wnt signal mediator β-catenin was previously demonstrated. We have recently reported that serum of CHF model mice activates Wnt signaling more potently than serum of control mice and that complement C1q mediates this activation.
View Article and Find Full Text PDFHypertension induces structural remodelling of arteries, which leads to arteriosclerosis and end-organ damage. Hyperplasia of vascular smooth muscle cells (VSMCs) and infiltration of immune cells are the hallmark of hypertensive arterial remodelling. However, the precise molecular mechanisms of arterial remodelling remain elusive.
View Article and Find Full Text PDFWnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice.
View Article and Find Full Text PDFBackground: Myocardial remodeling is a crucial step for progression of heart failure (HF). Free radical generation by the failing myocardium has been proposed as linked to myocardial remodeling. The aim of this study was to evaluate the urinary excretion of 8-iso-prostaglandin F2alpha (8-iso-PGF2alpha), a reliable marker for oxidant stress in vivo, and collagen turnover in patients with acute worsening of congestive HF.
View Article and Find Full Text PDFWe report a case of atrioventricular nodal reentrant tachycardia coexistent with atresia of the coronary sinus ostium. Radiofrequency current application between the supposed coronary sinus ostium and the tricuspid valve was effective at eliminating the tachycardia. A coronary venogram obtained by left coronary arteriography was useful for guiding the mapping catheter to the successful ablation site.
View Article and Find Full Text PDF