Image anomaly detection (AD) is widely researched on many occasions in computer vision tasks. High-dimensional data, such as image data, with noise and complex background is still challenging to detect anomalies under the situation that imbalanced or incomplete data are available. Some deep learning methods can be trained in an unsupervised way and map the original input into low-dimensional manifolds to predict larger differences in anomalies according to normal ones by dimension reduction.
View Article and Find Full Text PDFEarly detection of colorectal cancer can significantly facilitate clinicians' decision-making and reduce their workload. This can be achieved using automatic systems with endoscopic and histological images. Recently, the success of deep learning has motivated the development of image- and video-based polyp identification and segmentation.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe accurate detection of radioactive iodine-avid lymph node (LN) metastasis on I post-ablation whole-body planar scans (RxWBSs) is important in tracking the progression of the metastatic lymph nodes (mLNs) of patients with papillary thyroid cancer (PTC). However, severe noise artifacts and the indiscernible location of the mLN from adjacent tissues with similar gray-scale values make clinical decisions extremely challenging. This study aims (i) to develop a multilayer fully connected deep network (MFDN) for the automatic recognition of mLNs from thyroid remnant tissue by utilizing the dataset of RxWBSs and (ii) to evaluate its diagnostic performance using post-ablation single-photon emission computed tomography.
View Article and Find Full Text PDFAssessing the structure and function of organelles in living organisms of the primitive unicellular red algae Cyanidioschyzon merolae on three-dimensional sequential images demands a reliable automated technique in the class imbalance among various cellular structures during mitosis. Existing classification networks with commonly used loss functions were focused on larger numbers of cellular structures that lead to the unreliability of the system. Hence, we proposed a balanced deep regularized weighted compound dice loss (RWCDL) network for better localization of cell organelles.
View Article and Find Full Text PDFThe objectives of this study are to assess various automated texture features obtained from the segmented colony regions of induced pluripotent stem cells (iPSCs) and confirm their potential for characterizing the colonies using different machine learning techniques. One hundred and fifty-one features quantified using shape-based, moment-based, statistical and spectral texture feature groups are extracted from phase-contrast microscopic colony images of iPSCs. The forward stepwise regression model is implemented to select the most appropriate features required for categorizing the colonies.
View Article and Find Full Text PDFPluripotent stem cells can potentially be used in clinical applications as a model for studying disease progress. This tracking of disease-causing events in cells requires constant assessment of the quality of stem cells. Existing approaches are inadequate for robust and automated differentiation of stem cell colonies.
View Article and Find Full Text PDFObjectives: This study proposed a new automated screening system based on a hybrid genetic swarm fuzzy (GSF) classifier using digital dental panoramic radiographs to diagnose females with a low bone mineral density (BMD) or osteoporosis.
Methods: The geometrical attributes of both the mandibular cortical bone and trabecular bone were acquired using previously developed software. Designing an automated system for osteoporosis screening involved partitioning of the input attributes to generate an initial membership function (MF) and a rule set (RS), classification using a fuzzy inference system and optimization of the generated MF and RS using the genetic swarm algorithm.
Annu Int Conf IEEE Eng Med Biol Soc
August 2015
We address a problem of endoscopic image classification taken by different (e.g., old and new) endoscopies.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
July 2015
There are two major approaches to content-based image retrieval using local image descriptors. One is descriptor-by-descriptor matching and the other is based on comparison of global image representation that describes the set of local descriptors of each image. In large-scale problems, the latter is preferred due to its smaller memory requirements; however, it tends to be inferior to the former in terms of retrieval accuracy.
View Article and Find Full Text PDFIn time-resolved spectroscopy, composite signal sequences representing energy transfer in fluorescence materials are measured, and the physical characteristics of the materials are analyzed. Each signal sequence is represented by a sum of non-negative signal components, which are expressed by model functions. For analyzing the physical characteristics of a measured signal sequence, the parameters of the model functions are estimated.
View Article and Find Full Text PDFBackground: Early diagnosis of osteoporosis can potentially decrease the risk of fractures and improve the quality of life. Detection of thin inferior cortices of the mandible on dental panoramic radiographs could be useful for identifying postmenopausal women with low bone mineral density (BMD) or osteoporosis. The aim of our study was to assess the diagnostic efficacy of using kernel-based support vector machine (SVM) learning regarding the cortical width of the mandible on dental panoramic radiographs to identify postmenopausal women with low BMD.
View Article and Find Full Text PDFThe Carcinogenicity Reliability Database (CRDB) was constructed by collecting experimental carcinogenicity data on about 1,500 chemicals from six sources, including IARC, and NTP databases, and then by ranking their reliabilities into six unified categories. A wide variety of 911 organic chemicals were selected from the database for QSAR modeling, and 1,504 kinds of different molecular descriptors were calculated, based on their 3D molecular structures as modeled by the Dragon software. Positive (carcinogenic) and negative (non-carcinogenic) chemicals containing various substructures were counted using atom and functional group count descriptors, and the statistical significance of ratios of positives to negatives was tested for those substructures.
View Article and Find Full Text PDFMicroarrays have thousands to tens-of-thousands of gene features, but only a few hundred patient samples are available. The fundamental problem in microarray data analysis is identifying genes whose disruption causes congenital or acquired disease in humans. In this paper, we propose a new evolutionary method that can efficiently select a subset of potentially informative genes for support vector machine (SVM) classifiers.
View Article and Find Full Text PDFBackground: Recent analyses have suggested that many genes possess multiple transcription start sites (TSSs) that are differentially utilized in different tissues and cell lines. We have identified a huge number of TSSs mapped onto the mouse genome using the cap analysis of gene expression (CAGE) method. The standard hierarchical clustering algorithm, which gives us easily understandable graphical tree images, has difficulties in processing such huge amounts of TSS data and a better method to calculate and display the results is needed.
View Article and Find Full Text PDFThis paper describes an approach for constructing a classifier which is unaffected by occlusions in images. We propose a method for integrating an auto-associative network into a simple classifier. As the auto-associative network can recall the original image from a partly occluded input image, we can employ it to detect occluded regions and complete the input image by replacing those regions with recalled pixels.
View Article and Find Full Text PDF