Publications by authors named "Takeya Kubo"

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) acts as a sensor under oxidative stress, leading to induction of various biological responses. Given that mitogen-activated protein kinase (MAPK) signaling pathways mediate cellular responses to a wide variety of stimuli, including oxidative stress, here, we aimed to elucidate whether a cross-talk cascade between GAPDH and MAPKs occurs under oxidative stress. Of the three typical MAPKs investigated-extracellular signal-regulated kinase, p38, and c-Jun N-terminal kinase (JNK)-we found that hydrogen peroxide (HO)-induced JNK activation is significantly reduced in HEK293 cells treated with small-interfering (si)RNA targeting GAPDH.

View Article and Find Full Text PDF

Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive.

View Article and Find Full Text PDF

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a homotetrameric enzyme involved in a key step of glycolysis, also has a role in mediating cell death under nitrosative stress. Our previous reports suggest that nitric oxide-induced intramolecular disulfide-bonding GAPDH aggregation, which occurs through oxidation of the active site cysteine (Cys-152), participates in a mechanism to account for nitric oxide-induced death signaling in some neurodegenerative/neuropsychiatric disorders. Here, we demonstrate a rescue strategy for nitric oxide-induced cell death accompanied by GAPDH aggregation in a mutant with a substitution of Cys-152 to alanine (C152A-GAPDH).

View Article and Find Full Text PDF

Alzheimer disease (AD) is a progressive neurodegenerative disorder characterized by loss of neurons and formation of pathological extracellular deposits induced by amyloid-β peptide (Aβ). Numerous studies have established Aβ amyloidogenesis as a hallmark of AD pathogenesis, particularly with respect to mitochondrial dysfunction. We have previously shown that glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) forms amyloid-like aggregates upon exposure to oxidative stress and that these aggregates contribute to neuronal cell death.

View Article and Find Full Text PDF

In addition to its role in DNA repair, nuclear poly(ADP-ribose) polymerase-1 (PARP-1) mediates brain damage when it is over-activated by oxidative/nitrosative stress. Nonetheless, it remains unclear how PARP-1 is activated in neuropathological contexts. Here we report that PARP-1 interacts with a pool of glyceradehyde-3-phosphate dehydrogenase (GAPDH) that translocates into the nucleus under oxidative/nitrosative stress both in vitro and in vivo.

View Article and Find Full Text PDF

Botulinum neurotoxin type A (BoNT/A) cleaves SNAP-25 and interrupts the release of acetylcholine. We previously reported that BoNT/A subtype 2 (BoNT/A2) ameliorates pathologic behavior more effectively than subtype 1 (BoNT/A1) in a rat Parkinson's disease model. Here, we further show BoNT/A2 has fewer adverse effects than BoNT/A1.

View Article and Find Full Text PDF

Recent reports indicate that interruption of acetylcholine release by intrastriatal injection of botulinum neurotoxin type A (BoNT/A) in a rat Parkinson's disease model reduces pathogenic behavior without adverse side effects such as memory dysfunction. Current knowledge suggests that BoNT/A subtype 1 (BoNT/A1) and BoNT/A subtype 2 (BoNT/A2) exert different effects. In the present study, we compared the effects of BoNT/A1 and BoNT/A2 on rotation behavior and in vivo cleavage of presynaptic protein SNAP-25 in a rat unilateral 6-hydroxydopamine-induced Parkinson's disease model.

View Article and Find Full Text PDF

There has been a dramatic expansion of the literature on RNA interference and with it, increasing interest in the potential clinical utility of targeted inhibition of gene expression and associated protein knockdown. However, a critical factor limiting the experimental and therapeutic application of RNA interference is the ability to deliver small interfering RNAs (siRNAs), particularly in the central nervous system, without complications such as toxicity and inflammation. Here we show that a single intracerebroventricular injection of Accell siRNA, a new type of naked siRNA that has been modified chemically to allow for delivery in the absence of transfection reagents, even into differentiated cells such mature neurons, leads to neuron-specific protein knockdown in the adult rat brain.

View Article and Find Full Text PDF

Macrophages are essential for controlling the majority of infections, and are mediators of natural immunity. During infection, lipopolysaccharide (LPS) stimulates macrophages to produce pro-inflammatory cytokines. Adenosine and ATP released into the extracellular space by immunological stimuli have been shown to regulate various immune functions.

View Article and Find Full Text PDF

Glycerladehyde-3-phosphate dehydrogenase (GAPDH), a classic glycolytic enzyme, also has a role in mediating cell death under oxidative stress. Our previous reports suggest that oxidative stress-induced GAPDH aggregate formation is, at least in part, a mechanism to account for the death signaling. Here we show that substitution of cysteine for serine-284 of human GAPDH (S284C-GAPDH) leads to aggregate-prone GAPDH, and that its expression in SH-SY5Y human neuroblastoma results in greater dopamine-induced cell death than expression of wild type-GAPDH.

View Article and Find Full Text PDF

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH)(2) is a classic glycolytic enzyme that also mediates cell death by its nuclear translocation under oxidative stress. Meanwhile, we previously presented that oxidative stress induced disulfide-bonded GAPDH aggregation in vitro. Here, we propose that GAPDH aggregate formation might participate in oxidative stress-induced cell death both in vitro and in vivo.

View Article and Find Full Text PDF