Publications by authors named "Taketo M"

During mammalian sex determination, expression of the Y-linked gene Sry shifts the bipotential gonad toward a testicular fate by upregulating a feed-forward loop between FGF9 and SOX9 to establish SOX9 expression in somatic cells. We previously proposed that these signals are mutually antagonistic with counteracting signals in XX gonads and that a shift in the balance of these factors leads to either male or female development. Evidence in mice and humans suggests that the male pathway is opposed by the expression of two signals, WNT4 and R-SPONDIN-1 (RSPO1), that promote the ovarian fate and block testis development.

View Article and Find Full Text PDF

The activation of Wnt/beta-catenin signalling has an important function in gastrointestinal tumorigenesis. It has been suggested that the promotion of Wnt/beta-catenin activity beyond the threshold is important for carcinogenesis. We herein investigated the role of macrophages in the promotion of Wnt/beta-catenin activity in gastric tumorigenesis.

View Article and Find Full Text PDF

Myofibroblasts, also known as activated fibroblasts, constitute an important niche for tumor development through the promotion of angiogenesis. However, the mechanism of stromal fibroblast activation in tumor tissues has not been fully understood. A gastric cancer mouse model (Gan mice) was recently constructed by simultaneous activation of prostaglandin (PG) E2 and Wnt signaling in the gastric mucosa.

View Article and Find Full Text PDF

Recent studies revealed that the Wnt receptor Frizzled-5 (Fzd5) is required for eye and retina development in zebrafish and Xenopus, however, its role during mammalian eye development is unknown. In the mouse embryo, Fzd5 is prominently expressed in the pituitary, distal optic vesicle, and optic stalk, then later in the progenitor zone of the developing retina. To elucidate the role of Fzd5 during eye development, we analyzed embryos with a germline disruption of the Fzd5 gene at E10.

View Article and Find Full Text PDF

beta-Catenin signaling is required for hair follicle development, but it is unknown whether its activation is sufficient to globally program embryonic epidermis to hair follicle fate. To address this, we mutated endogenous epithelial beta-catenin to a dominant-active form in vivo. Hair follicle placodes were expanded and induced prematurely in activated beta-catenin mutant embryos, but failed to invaginate or form multilayered structures.

View Article and Find Full Text PDF

beta-Catenin, as an important effector of the canonical Wnt signaling pathway and as a regulator of cell adhesion, has been demonstrated to be involved in multiple developmental processes and tumorigenesis. beta-Catenin expression was found mainly on the Sertoli cell membrane starting from embryonic day 15.5 in the developing testes.

View Article and Find Full Text PDF

The HMG-domain-containing transcription factor Sox9 is an important regulator of chondrogenesis, testis formation and development of several other organs. Sox9 is expressed in the otic placodes, the primordia of the inner ear, and studies in Xenopus have provided evidence that Sox9 is required for otic specification. Here we report novel and different functions of Sox9 during mouse inner ear development.

View Article and Find Full Text PDF

Isl1(+) cardiovascular progenitors and their downstream progeny play a pivotal role in cardiogenesis and lineage diversification of the heart. The mechanisms that control their renewal and differentiation are largely unknown. Herein, we show that the Wnt/beta-catenin pathway is a major component by which cardiac mesenchymal cells modulate the prespecification, renewal, and differentiation of isl1(+) cardiovascular progenitors.

View Article and Find Full Text PDF

Maintenance of classic stem cell hierarchies is dependent upon stem cell self-renewal mediated in part by Wnt/beta-catenin regulation of the cell cycle. This function is critical in rapidly renewing tissues due to the obligate role played by the tissue stem cell. However, the stem cell hierarchy responsible for maintenance of the conducting airway epithelium is distinct from classic stem cell hierarchies.

View Article and Find Full Text PDF

Borealin/DasraB is a member of the chromosomal passenger protein complex (CPC) required for proper segregation of chromosomes during mitosis. In Drosophila melanogaster, inactivation of Borealin/DasraB results in polyploidy, delayed mitosis and abnormal tissue development, indicating its critical role for cell proliferation. However, the in vivo role of mammalian Borealin/DasraB remains unclear.

View Article and Find Full Text PDF

Objective: Berberine (BBR) activates AMP-activated protein kinase (AMPK) and improves insulin sensitivity in rodent models of insulin resistance. We investigated the mechanism of activation of AMPK by BBR and explored whether derivatization of BBR could improve its in vivo efficacy.

Research Design And Methods: AMPK phosphorylation was examined in L6 myotubes and LKB1(-/-) cells, with or without the Ca(2+)/calmodulin-dependent protein kinase kinase (CAMKK) inhibitor STO-609.

View Article and Find Full Text PDF

During embryonic and postnatal development, Wnt/beta-catenin signaling is involved in several stages of hair morphogenesis from placode formation to hair shaft differentiation. Using a transgenic approach, we have investigated further the role of beta-catenin signaling in embryonic hair development. Forced epithelial stabilization of beta-catenin resulted in precocious and excessive induction of hair follicles even in the absence of Eda/Edar signaling, a pathway essential for primary hair placode formation.

View Article and Find Full Text PDF

The sex of an individual is determined by the fate of the gonad. While the expression of Sry and Sox9 is sufficient to induce male development, we here show that female differentiation requires activation of the canonical beta-catenin signaling pathway. beta-catenin activation is controlled by Rspo1 in XX gonads and Rspo1 knockout mice show masculinized gonads.

View Article and Find Full Text PDF

Rhythmic production of vertebral precursors, the somites, causes bilateral columns of embryonic segments to form. This process involves a molecular oscillator--the segmentation clock--whose signal is translated into a spatial, periodic pattern by a complex signalling gradient system within the presomitic mesoderm (PSM). In mouse embryos, Wnt signalling has been implicated in both the clock and gradient mechanisms, but how the Wnt pathway can perform these two functions simultaneously remains unclear.

View Article and Find Full Text PDF

In mammals, sex is determined in the bipotential embryonic gonad by a balanced network of gene actions which when altered causes disorders of sexual development (DSD, formerly known as intersex). In the XY gonad, presumptive Sertoli cells begin to differentiate when SRY up-regulates SOX9, which in turn activates FGF9 and PGDS to maintain its own expression. This study identifies a new and essential component of FGF signaling in sex determination.

View Article and Find Full Text PDF

Somitogenesis is thought to be controlled by a segmentation clock, which consists of molecular oscillators in the Wnt3a, Fgf8 and Notch pathways. Using conditional alleles of Ctnnb1 (beta-catenin), we show that the canonical Wnt3a/beta-catenin pathway is necessary for molecular oscillations in all three signaling pathways but does not function as an integral component of the oscillator. Small, irregular somites persist in abnormally posterior locations in the absence of beta-catenin and cycling clock gene expression.

View Article and Find Full Text PDF

Wnt/beta-catenin signaling plays key roles in tooth development, but how this pathway intersects with the complex interplay of signaling factors regulating dental morphogenesis has been unclear. We demonstrate that Wnt/beta-catenin signaling is active at multiple stages of tooth development. Mutation of beta-catenin to a constitutively active form in oral epithelium causes formation of large, misshapen tooth buds and ectopic teeth, and expanded expression of signaling molecules important for tooth development.

View Article and Find Full Text PDF

Heart formation requires the coordinated recruitment of multiple cardiac progenitor cell populations derived from both the first and second heart fields. In this study, we have ablated the Bmp receptor 1a and the Wnt effector beta-catenin in the developing heart of mice by using MesP1-cre, which acts in early mesoderm progenitors that contribute to both first and second heart fields. Remarkably, the entire cardiac crescent and later the primitive ventricle were absent in MesP1-cre; BmpR1a(lox/lox) mutants.

View Article and Find Full Text PDF

Tumor-stromal interaction is implicated in many stages of tumor development, although it remains unclear how genetic lesions in tumor cells affect stromal cells. We have recently shown that inactivation of transforming growth factor-beta family signaling within colon cancer epithelium increases chemokine CC chemokine ligand 9 (CCL9) and promotes recruitment of the matrix metalloproteinase (MMP)-expressing stromal cells that carry CC chemokine receptor 1 (CCR1), the cognate receptor for CCL9. We have further shown that lack of CCR1 prevents the accumulation of MMP-expressing cells at the invasion front and suppresses tumor invasion.

View Article and Find Full Text PDF

The adenomatous polyposis coli (APC) gene is a key tumor suppressor gene. Mutations in the gene have been found not only in most colon cancers but also in some other cancers, such as those of the liver. The APC gene product is a 312 kDa protein that has multiple domains, through which it binds to various proteins, including beta-catenin, axin, CtBP, Asefs, IQGAP1, EB1 and microtubules.

View Article and Find Full Text PDF

Transgenic mice expressing stabilized beta-catenin in neural progenitors develop enlarged brains resulting from increased progenitor expansion. To more precisely define beta-catenin regulation of progenitor fate, we employed a conditional transgenic approach to delete the beta-catenin regulatory domain from neural progenitors, resulting in expression of stabilized protein from its endogenous promoter in these cells and their progeny. An increased fraction of transgenic cortical cells express the progenitor markers Nestin and LewisX, confirming a relative expansion of this population.

View Article and Find Full Text PDF

Background And Aims: Intestinal crypts constitute a niche in which epithelial progenitors respond to Wnt signals, replicate, and prepare to differentiate. Because mutations in Wnt pathway genes lead to intestinal cancer, the role of Wnt signaling in gut epithelial homeostasis is a subject of intense investigation. We studied how Wnt signaling is established during intestine development.

View Article and Find Full Text PDF

In the vertebrate head, mesoderm cells fuse together to form a myofiber, which is attached to specific cranial neural crest (CNC)-derived skeletal elements in a highly coordinated manner. Although it has long been recognized that CNC plays a role in the formation of the head musculature, the precise molecular underpinnings of this process remain elusive. In the present study we explored the nature of the crosstalk between CNC and mesoderm cells during head muscle development, employing three models for genetic perturbations of CNC development in mice, as well as experimental ablation of CNC in chick embryos.

View Article and Find Full Text PDF

The anterior heart field (AHF), which contributes to the outflow tract and right ventricle of the heart, is defined in part by expression of the LIM homeobox transcription factor Isl-1. The importance of Isl-1-positive cells in cardiac development and homeostasis is underscored by the finding that these cells are required for cardiac development and act as cardiac stem/progenitor cells within the postnatal heart. However, the molecular pathways regulating these cells' expansion and differentiation are poorly understood.

View Article and Find Full Text PDF

Guiding multipotent cells into distinct lineages and controlling their expansion remain fundamental challenges in developmental and stem cell biology. Members of the Wnt pathway control many pivotal embryonic events, often promoting self-renewal or expansion of progenitor cells. In contrast, canonical Wnt ligands are thought to negatively regulate cardiomyogenesis in several species.

View Article and Find Full Text PDF