Combining genetic heterogeneity and crop homogeneity serves a dual purpose: disease control and maintaining harvest quality. Multilines, which consist of a genetically uniform mixture of plants, have the potential to suppress disease while maintaining eating quality, yet practical methods that facilitate commercial use over large geographical areas are lacking. Here, we describe effective rice multiline management based on seed mixture composition changes informed by monitoring virulent blast races in Niigata Prefecture, Japan.
View Article and Find Full Text PDFThe hypersensitive response (HR) of plants is one of the earliest responses to prevent pathogen invasion. A brown dot lesion on a leaf is visual evidence of the HR against the blast fungus Magnaporthe oryzae in rice, but tracking the browning process has been difficult. In this study, we induced the HR in rice cultivars harboring the blast resistance gene Pit by inoculation of an incompatible M.
View Article and Find Full Text PDFBackground: Rice blast is a destructive disease caused by Magnaporthe oryzae, and it has a large impact on rice production worldwide. Compared with leaf blast resistance, our understanding of panicle blast resistance is limited, with only one panicle blast resistance gene, Pb1, isolated so far. The japonica cultivar Miyazakimochi shows resistance to panicle blast, yet the genetic components accounting for this resistance remain to be determined.
View Article and Find Full Text PDFWe analyzed the avirulence gene AVR-Pita1 in Japanese rice blast isolates to determine how they gain virulence toward rice cultivars containing the Pita resistance gene. An avirulent isolate, OS99-G-7a (G7a), from a Japanese commercial field contained two paralogs of AVR-Pita1, designated as AVR-Pita1(JA) and AVR-Pita1(JB). Analysis of virulent, independent mutants derived from G7a, a single avirulent progenitor strain, indicated that AVR-Pita1(JA) was functional but AVR-Pita1(JB) was nonfunctional.
View Article and Find Full Text PDFIn order to clone and analyse the avirulence gene AVR-Pia from Japanese field isolates of Magnaporthe oryzae, a mutant of the M. oryzae strain Ina168 was isolated. This mutant, which was named Ina168m95-1, gained virulence towards the rice cultivar Aichi-asahi, which contains the resistance gene Pia.
View Article and Find Full Text PDFPhospholipase D (PLD) plays an important role in plants, including responses to abiotic as well as biotic stresses. A survey of the rice (Oryza sativa) genome database indicated the presence of 17 PLD genes in the genome, among which OsPLDalpha1, OsPLDalpha5, and OsPLDbeta1 were highly expressed in most tissues studied. To examine the physiological function of PLD in rice, we made knockdown plants for each PLD isoform by introducing gene-specific RNA interference constructs.
View Article and Find Full Text PDF