The peroxisome proliferator-activated receptor (PPAR) δ is involved in tissue repair. In this study, we investigated the functional role of PPARδ in corneal epithelial wound healing. In an in vivo corneal wound-healing model, the changes of PPARδ expression in corneal epithelia were examined by immunofluorescence microscopy, and the effect of topical administrations of a PPARδ agonist on corneal wound healing was also evaluated.
View Article and Find Full Text PDFHydrogen sulfide (H(2)S), a gasotransmitter, induces neuronal differentiation characterized by neuritogenesis and functional up-regulation of high voltage-activated Ca(2+) channels, via activation of T-type Ca(2+) channels in NG108-15 cells. We thus analyzed signaling mechanisms for the H(2)S-evoked neuronal differentiation. NaHS, a donor for H(2)S, facilitated T-type Ca(2+) channel-dependent membrane currents, an effect blocked by ascorbic acid that selectively inhibits Ca(v)3.
View Article and Find Full Text PDFWe investigated if stimulation of T-type Ca(2+) channels with sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H(2)S), could cause neuronal differentiation of NG108-15 cells. Like dibutyryl cyclic AMP (db-cAMP), treatment with NaHS at 1.5-13.
View Article and Find Full Text PDF