Publications by authors named "Takeshi Takeuchi"

Coral polyps are composed of four tissues; however, their characteristics are largely unexplored. Here we report biological characteristics of tentacles (Te), mesenterial filaments (Me), body wall (Bo), and mouth with pharynx (MP), using comparative genomic, morpho-histological, and transcriptomic analyses of the large-polyp coral, Fimbriaphyllia ancora. A draft F.

View Article and Find Full Text PDF
Article Synopsis
  • The European flat oyster's population has drastically declined due to two parasites, leading to stock collapse and loss of natural beds.
  • Research has focused on understanding immune responses to these parasites and developing genetic programs to enhance parasite resistance.
  • A newly completed chromosome-level genome assembly provides insights into the oyster's genetic makeup and is crucial for ongoing studies in breeding, aquaculture, and restoration of natural habitats.
View Article and Find Full Text PDF

Homologous chromosomes in the diploid genome are thought to contain equivalent genetic information, but this common concept has not been fully verified in animal genomes with high heterozygosity. Here we report a near-complete, haplotype-phased, genome assembly of the pearl oyster, Pinctada fucata, using hi-fidelity (HiFi) long reads and chromosome conformation capture data. This assembly includes 14 pairs of long scaffolds (>38 Mb) corresponding to chromosomes (2n = 28).

View Article and Find Full Text PDF

Several types of shell matrix proteins (SMPs) have been identified in molluskan shells. Their diversity is the consequence of various molecular processes, including domain shuffling and gene duplication. However, the evolutionary origin of most SMPs remains unclear.

View Article and Find Full Text PDF

Massive corals of the genus Porites, common, keystone reef builders in the Indo-Pacific Ocean, are distinguished by their relative stress tolerance and longevity. In order to identify genetic bases of these attributes, we sequenced the complete genome of a massive coral, Porites australiensis. We developed a genome assembly and gene models of comparable quality to those of other coral genomes.

View Article and Find Full Text PDF

Molluscan shells are among the most fascinating research objects because of their diverse morphologies and textures. The formation of these delicate biomineralized structures is a matrix-mediated process. A question that arises is what are the essential components required to build these exoskeletons.

View Article and Find Full Text PDF

Molluscan shells are organo-mineral composites, in which the dominant calcium carbonate is intimately associated with an organic matrix comprised mainly of proteins and polysaccharides. However, whether the various shell matrix proteins (SMPs) date to the origin of hard skeletons in the Cambrian, or whether they represent later deployment through adaptive evolution, is still debated. In order to address this issue and to better understand the origins and evolution of biomineralization, phylogenetic analyses have been performed on the three SMP families, Von Willebrand factor type A (VWA) and chitin-binding domain-containing protein (VWA-CB dcp), chitobiase, and carbonic anhydrase (CA), which exist in both larval and adult shell proteomes in the bivalves, Crassostrea gigas and Pinctada fucata.

View Article and Find Full Text PDF

Molluscan shell matrix proteins (SMPs) are essential in biomineralization. Here, we identify potentially important SMPs by exploiting the asymmetric shell growth in snail, Lymnaea stagnalis. Asymmetric shells require bilaterally asymmetric expression of SMP genes.

View Article and Find Full Text PDF

In the open ocean without terrain boundaries, marine invertebrates with pelagic larvae can migrate long distances using ocean currents, suggesting reduced genetic diversification. Contrary to this assumption, however, genetic differentiation is often observed in marine invertebrates. In the present study, we sought to explain how population structure is established in the western Pacific Ocean, where the strong Kuroshio Current maintains high levels of gene flow from south to north, presumably promoting genetic homogeneity.

View Article and Find Full Text PDF

Molluscan shells, mainly composed of calcium carbonate, also contain organic components such as proteins and polysaccharides. Shell organic matrices construct frameworks of shell structures and regulate crystallization processes during shell formation. To date, a number of shell matrix proteins (SMPs) have been identified, and their functions in shell formation have been studied.

View Article and Find Full Text PDF

The pearl oyster, Pinctada fucata, is cultured for pearl production in Japan. The shell of the pearl oyster consists of calcium carbonate and a small amount of organic matrix. Despite many studies of the shell matrix proteins, the mechanism by which calcium elements are transported from the mantle to the shell remains unclear.

View Article and Find Full Text PDF

Evolution of novel traits is a challenging subject in biological research. Several snake lineages developed elaborate venom systems to deliver complex protein mixtures for prey capture. To understand mechanisms involved in snake venom evolution, we decoded here the ~1.

View Article and Find Full Text PDF

Background: The marine dinoflagellate, Symbiodinium, is a well-known photosynthetic partner for coral and other diverse, non-photosynthetic hosts in subtropical and tropical shallows, where it comprises an essential component of marine ecosystems. Using molecular phylogenetics, the genus Symbiodinium has been classified into nine major clades, A-I, and one of the reported differences among phenotypes is their capacity to synthesize mycosporine-like amino acids (MAAs), which absorb UV radiation. However, the genetic basis for this difference in synthetic capacity is unknown.

View Article and Find Full Text PDF

To construct calcium carbonate skeletons of sophisticated architecture, scleractinian corals secrete an extracellular skeletal organic matrix (SOM) from aboral ectodermal cells. The SOM, which is composed of proteins, saccharides, and lipids, performs functions critical for skeleton formation. Even though polysaccharides constitute the major component of the SOM, its contribution to coral skeleton formation is poorly understood.

View Article and Find Full Text PDF

Mass mortality that is acompanied by reddish browning of the soft tissues has been occurring in cultured pearl oyster, Pinctada fucata martensii. The disease is called Akoya oyster disease (AOD). Although spreading pattern of the disease and transmission experiments suggest that the disease is infectious, the causative agent has not yet been identified.

View Article and Find Full Text PDF

The hydrothermal vent mussel Bathymodiolus azoricus lives in an intimate symbiosis with two types of chemosynthetic Gammaproteobacteria in its gills: a sulfur oxidizer and a methane oxidizer. Despite numerous investigations over the last decades, the degree of interdependence between the three symbiotic partners, their individual metabolic contributions, as well as the mechanism of carbon transfer from the symbionts to the host are poorly understood. We used a combination of proteomics and genomics to investigate the physiology and metabolism of the individual symbiotic partners.

View Article and Find Full Text PDF

Despite the importance of stony corals in many research fields related to global issues, such as marine ecology, climate change, paleoclimatogy, and metazoan evolution, very little is known about the evolutionary origin of coral skeleton formation. In order to investigate the evolution of coral biomineralization, we have identified skeletal organic matrix proteins (SOMPs) in the skeletal proteome of the scleractinian coral, Acropora digitifera, for which large genomic and transcriptomic datasets are available. Scrupulous gene annotation was conducted based on comparisons of functional domain structures among metazoans.

View Article and Find Full Text PDF

Calcium carbonate skeletal tissues in metazoans comprise a small quantity of occluded organic macromolecules, mostly proteins and polysaccharides that constitute the skeletal matrix. Because its functions in modulating the biomineralization process are well known, the skeletal matrix has been extensively studied, successively via classical biochemical approaches, via molecular biology and, in recent years, via transcriptomics and proteomics. The optimistic view that the deposition of calcium carbonate minerals requires a limited number of macromolecules has been challenged, in the last decade, by high-throughput approaches.

View Article and Find Full Text PDF

Introduction: Bivalve molluscs have flourished in marine environments, and many species constitute important aquatic resources. Recently, whole genome sequences from two bivalves, the pearl oyster, Pinctada fucata, and the Pacific oyster, Crassostrea gigas, have been decoded, making it possible to compare genomic sequences among molluscs, and to explore general and lineage-specific genetic features and trends in bivalves. In order to improve the quality of sequence data for these purposes, we have updated the entire P.

View Article and Find Full Text PDF

The evolutionary origins of lingulid brachiopods and their calcium phosphate shells have been obscure. Here we decode the 425-Mb genome of Lingula anatina to gain insights into brachiopod evolution. Comprehensive phylogenomic analyses place Lingula close to molluscs, but distant from annelids.

View Article and Find Full Text PDF

Genome sequencing of Symbiodinium minutum revealed that 95 of 109 plastid-associated genes have been transferred to the nuclear genome and subsequently expanded by gene duplication. Only 14 genes remain in plastids and occur as DNA minicircles. Each minicircle (1.

View Article and Find Full Text PDF

In molluscs, shell matrix proteins are associated with biomineralization, a biologically controlled process that involves nucleation and growth of calcium carbonate crystals. Identification and characterization of shell matrix proteins are important for better understanding of the adaptive radiation of a large variety of molluscs. We searched the draft genome sequence of the pearl oyster Pinctada fucata and annotated 30 different kinds of shell matrix proteins.

View Article and Find Full Text PDF

We constructed a web-based genome annotation platform, MarinegenomicsDB, to integrate genome data from various marine organisms including the pearl oyster Pinctada fucata and the coral Acropora digitifera. This newly developed viewer application provides open access to published data and a user-friendly environment for community-based manual gene annotation. Development on a flexible framework enables easy expansion of the website on demand.

View Article and Find Full Text PDF

The genome sequence of the Japanese pearl oyster, the first draft genome from a mollusk, was published in February 2012. In order to curate the draft genome assemblies and annotate the predicted gene models, two annotation Jamborees were held in Okinawa and Tokyo. To date, 761 genes have been surveyed and curated.

View Article and Find Full Text PDF

The initial, manual annotation analysis of the pearl oyster genome is reported in the present issue of Zoological Science. Contributors represent a wide array of research fields, including bioinformatics, molecular and cellular biology, fisheries science, biochemistry, biomineralogy, molluscan biology, evolutionary and developmental biology, and paleobiology, reflecting the pearl oyster's broad biological and economic importance. The annotated pearl oyster genome paves the way for future studies in diverse areas including pearl aquaculture, biomineralization, and lophotrochozoan biology.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbifv1lc2mavc8ab8kmcmqntih4jn832t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once