Publications by authors named "Takeshi Susukida"

Specific human leukocyte antigen (HLA) polymorphisms combined with certain drug administration strongly correlate with skin eruption. Abacavir hypersensitivity (AHS), which is strongly associated with HLA-B*57:01, is one of the most representative examples. Conventionally, HLA transmits immunological signals via interactions with T cell receptors on the cell surface.

View Article and Find Full Text PDF

(1) Background: Although the important role of dietary energy intake in regulating both cancer progression and host immunity has been widely recognized, it remains unclear whether dietary calorie restriction (CR) has any impact on anti-tumor immune responses. (2) Methods: Using an immunogenic B16 melanoma cell expressing ovalbumin (B16-OVA), we examined the effect of the CR diet on B16-OVA tumor growth and host immune responses. To further test whether the CR diet affects the efficacy of cancer immunotherapy, we examined the effect of CR against anti-PD-1 monoclonal antibody (anti-PD-1 Ab) treatment.

View Article and Find Full Text PDF

Chimeric-antigen-receptor (CAR) T-cell therapy for CD19-expressing B-cell malignancies is already widely adopted in clinical practice. On the other hand, the development of CAR-T-cell therapy for T-cell malignancies is in its nascent stage. One of the potential targets is CD26, to which we have developed and evaluated the efficacy and safety of the humanized monoclonal antibody YS110.

View Article and Find Full Text PDF

Anti-human immunodeficiency virus (HIV) drug abacavir (ABC) binds to the specific allele of human leukocyte antigen (HLA-B*57:01) and activates CD8 T cells by presenting altered abnormal peptides. Here, we examined the effect of ABC-induced altered self-presentation by HLA-B*57:01 on immunogenicity of cancer cells and CD8 T-cell-dependent anti-tumor immunity. We established human-mouse chimeric HLA-B*57:01-expressing tumor cell lines (B16F10 and 3LL) and tested the anti-tumor effect of ABC in vivo.

View Article and Find Full Text PDF

DPP8/9 inhibition induces either pyroptotic or apoptotic cell death in hematological malignancies. We previously reported that treatment with the DPP8/9 inhibitor 1G244 resulted in apoptotic cell death in myeloma, and our current study further evaluates the mechanism of action of 1G244 in different blood cancer cell lines. Specifically, 1G244 inhibited DPP9 to induce GSDMD-mediated-pyroptosis at low concentrations and inhibited DPP8 to cause caspase-3-mediated-apoptosis at high concentrations.

View Article and Find Full Text PDF

Based on recent genome-wide association studies, abacavir-induced hypersensitivity is highly associated with human leukocyte antigen (HLA)-B*57:01 allele. However, the underlying mechanism of this occurrence is unclear. To investigate the underlying mechanism, we developed HLA-B*57:01 transgenic mice and found that application of abacavir could cause CD8 T cell activation with elevation in PD1 expression; however, severe skin hypersensitivity was not observed.

View Article and Find Full Text PDF

Idiosyncratic drug toxicity (IDT) associated with specific human leukocyte antigen (HLA) allotype is a rare and unpredictable life-threatening adverse drug reaction for which prospective mechanistic studies in humans are difficult. Here, we show the importance of immune tolerance for IDT onset and determine whether it is susceptible to a common IDT, HLA-B*57:01-mediated abacavir (ABC)-induced hypersensitivity (AHS), using CD4 T cell-depleted programmed death-1 receptor (PD-1)-deficient HLA-B*57:01 transgenic mice (B*57:01-Tg/PD-1). Although AHS is not observed in B*57:01-Tg mice, ABC treatment increases the proportion of cytokine- and cytolytic granule-secreting effector memory CD8 T cells in CD4 T cell-depleted B*57:01-Tg/PD-1 mice, thereby inducing skin toxicity with CD8 T cell infiltration, mimicking AHS.

View Article and Find Full Text PDF

Various types of transgenic mice carrying either class I or II human leukocyte antigen (HLA) molecules are readily available, and reports describing their use in a variety of studies have been published for more than 30 years. Examples of their use include the discovery of HLA-specific antigens against viral infection as well as the reproduction of HLA-mediated autoimmune diseases for the development of therapeutic strategies. Recently, HLA transgenic mice have been used to reproduce HLA-mediated idiosyncratic drug toxicity (IDT), a rare and unpredictable adverse drug reaction that can result in death.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) can cause hepatic failure and result in drug withdrawal from the market. It has host-related and compound-dependent mechanisms. Preclinical prediction of DILI risk is very challenging and safety assessments based on animals inadequately forecast human DILI risk.

View Article and Find Full Text PDF

Cholestatic drug-induced liver injury (DILI) is a type of hepatotoxicity. Its underlying mechanisms are dysfunction of bile salt export pump (BSEP) and multidrug resistance-associated protein 2/3/4 (MRP2/3/4), which play major roles in bile acid (BA) excretion into the bile canaliculi and blood, resulting in accumulation of BAs in hepatocytes. The sandwich-cultured hepatocyte (SCH) model can simultaneously analyze hepatic uptake and biliary excretion.

View Article and Find Full Text PDF

Genome-wide association studies indicate that several idiosyncratic adverse drug reactions are highly associated with specific human leukocyte antigen (HLA) alleles. For instance, abacavir, a human immunodeficiency virus reverse transcriptase inhibitor, induces multiorgan toxicity exclusively in patients carrying the HLA-B*57:01 allele. However, the underlying mechanism is unclear due to a lack of appropriate animal models.

View Article and Find Full Text PDF

Immune-mediated idiosyncratic drug toxicity (IDT) is a rare adverse drug reaction, potentially resulting in death. Although genome-wide association studies suggest that the occurrence of immune-mediated IDT is strongly associated with specific human leukocyte antigen (HLA) allotypes, these associations have not yet been prospectively demonstrated. In this study, we focused on HLA-B*57:01 and abacavir (ABC)-induced immune-mediated IDT, and constructed transgenic mice carrying chimeric HLA-B*57:01 (B*57:01-Tg) to determine if this in vivo model may be useful for evaluating immune-mediated IDT.

View Article and Find Full Text PDF

Inhibition of bile salt export pump (BSEP) causes hepatic accumulation of toxic bile acid (BA), leading to hepatocyte death. We reported a sandwich-cultured hepatocyte (SCH)-based model that can estimate potential cholestatic compounds by assessing their ability to induce hepatotoxicity in combination with a titrated amount of human 12 BA species. However, there is little information about the specific BAs responsible for hepatotoxicity, when BSEP is inhibited.

View Article and Find Full Text PDF

Bile acid (BA) retention within hepatocytes is an underlying mechanism of cholestatic drug-induced liver injury (DILI). We previously developed an assay using sandwich-cultured human hepatocytes (SCHHs) to evaluate drug-induced hepatocyte toxicity accompanying intracellular BA accumulation. However, due to shortcomings commonly associated with the use of primary human hepatocytes (e.

View Article and Find Full Text PDF

Drug-induced liver injury (DILI) is of concern to the pharmaceutical industry, and reliable preclinical screens are required. Previously, we established an in vitro bile acid-dependent hepatotoxicity assay that mimics cholestatic DILI in vivo. Here, we confirmed that this assay can predict cholestatic DILI in clinical situations by comparing in vitro cytotoxicity data with in vivo risk.

View Article and Find Full Text PDF

The bile salt export pump (BSEP or Bsep) functions as an apical transporter to eliminate bile acids (BAs) from hepatocytes into the bile. BSEP or Bsep inhibitors engender BA retention, suggested as an underlying mechanism of cholestatic drug-induced liver injury. We previously reported a method to evaluate BSEP-mediated BA-dependent hepatocyte toxicity by using sandwich-cultured hepatocytes (SCHs).

View Article and Find Full Text PDF

1. Raloxifene-6-glucuronide (R6G) is a substrate of rat multidrug resistance-associated protein 2 (Mrp2), a transporter responsible for biliary excretion of organic anions. 2.

View Article and Find Full Text PDF