Publications by authors named "Takeshi Shinkai"

ZnO nanorods have attracted much attention owing to their outstanding properties for chemical gas sensors. Although they show greater sensing properties than conventional nanoparticulate ZnO, high operation temperature (>250-350 °C) is required for them to work even if precious metals are deposited on them to sensitize their sensing properties. Light irradiation is one solution for overcoming the high operation temperature and the gas selectivity because it assists the oxidation activity on the surface that affects the sensor response.

View Article and Find Full Text PDF

A cost-effective H separation method is required for the purification of gaseous mixtures containing H. Thus, in this study, we investigate the H separation properties of Ce ion-doped partially reduced graphene oxide (prGO) membranes. Pt/C-catalyst-coated, dense, micrometer-thick membranes are fabricated by stacking Ce-prGO nanosheets, followed by thermal annealing.

View Article and Find Full Text PDF

Understanding the surface chemistry of target gases on sensing materials is essential for designing high-performance gas sensors. Here, we report the effect of Pt-loading on the sensing of volatile organic compounds (VOCs) with ZnO gas sensors, demonstrated by diffuse reflection infrared Fourier transform (DRIFT) spectroscopy. Pt-loaded ZnO nanocrystals (NCs) of 13~22 nm are synthesized using the hot soap method.

View Article and Find Full Text PDF

Detection, monitoring, and analysis of ethanol are important in various fields such as health care, food industries, and safety control. In this study, we report that a solid electrolyte gas sensor based on a proton-conducting membrane is promising for detecting ethanol in air. We focused on graphene oxide (GO) as a new solid electrolyte because it shows a high proton conductivity at room temperature.

View Article and Find Full Text PDF