Microbes in the dark oceans are a key determinant of remineralization of sinking carbon particles. However, most marine ecosystem models overlook how microbes aggregate on particles and the microscale interactions between particle-associated microbes, making it difficult to obtain mechanistic insights on their vertical power-law decay pattern. Here, we present a spatial population model where the attachment and detachment processes of bacterial cells depend on local density of particle-associated bacteria.
View Article and Find Full Text PDFPlant traits, which are often species specific, can serve as environmental filtering for community assembly on plants. At the same time, the species identity of the initially colonizing arthropods would vary between plant individuals, which would subsequently influence colonizing arthropods and community development in the later stages. However, it remains unclear whether interindividual divergence due to priority effects is equally important as plant trait-specific environmental filtering in the initial stages.
View Article and Find Full Text PDFReliable survey of arthropods is a crucial for their conservation, community ecology, and pest control on terrestrial plants. However, efficient and comprehensive surveys are hindered by challenges in collecting arthropods and identifying especially small species. To address this issue, we developed a non-destructive environmental DNA (eDNA) collection method termed "plant flow collection" to apply eDNA metabarcoding to terrestrial arthropods.
View Article and Find Full Text PDFMicrobial interactions shape the structure and function of microbial communities with profound consequences for biogeochemical cycles and ecosystem health. Yet, most interaction mechanisms are studied only in model systems and their prevalence is unknown. To systematically explore the functional and interaction potential of sequenced marine bacteria, we developed a trait-based approach, and applied it to 473 complete genomes (248 genera), representing a substantial fraction of marine microbial communities.
View Article and Find Full Text PDFUntangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass).
View Article and Find Full Text PDFReconstructing interactions from observational data is a critical need for investigating natural biological networks, wherein network dimensionality is usually high. However, these pose a challenge to existing methods that can quantify only small interaction networks. Here, we proposed a novel approach to reconstruct high-dimensional interaction Jacobian networks using empirical time series without specific model assumptions.
View Article and Find Full Text PDFHow do skilled players change their motion patterns depending on motion effort? Pitchers commonly accelerate wrist and elbow joint rotations via proximal joint motions. Contrastingly, they show individually different pitching motions, such as in wind-up or follow-through. Despite the generality of the uniform and diverse features, effort-dependent effects on these features are unclear.
View Article and Find Full Text PDFViral infections are a major factor in diatom cell death. However, the effects of viruses on diatom dynamics remain unclear. Based on laboratory studies, it is hypothesized that virus-induced diatom mortality is dependent on the diatom growth rate.
View Article and Find Full Text PDFFront Sports Act Living
April 2020
Fungal diseases threaten natural and man-made ecosystems. Chytridiomycota (chytrids) infect a wide host range, including phytoplankton species that form the basis of aquatic food webs and produce roughly half of Earth's oxygen. However, blooms of large or toxic phytoplankton form trophic bottlenecks, as they are inedible to zooplankton.
View Article and Find Full Text PDFHeterotrophic microbes with the capability to process considerable amounts of organic matter can colonize microplastic particles (MP) in aquatic ecosystems. Weather colonization of microorganisms on MP will alter ecological niche and functioning of microbial communities remains still unanswered. Therefore, we compared the functional diversity of biofilms on microplastics when incubated in three lakes in northeastern Germany differing in trophy and limnological features.
View Article and Find Full Text PDFChytridiomycota, often referred to as chytrids, can be virulent parasites with the potential to inflict mass mortalities on hosts, causing e.g. changes in phytoplankton size distributions and succession, and the delay or suppression of bloom events.
View Article and Find Full Text PDFRecent efforts in controlling mosquito-borne diseases focus on biocontrol strategies that incapacitate pathogens inside mosquitoes by altering the mosquito's microbiome. A case in point is the introduction of Wolbachia into natural mosquito populations in order to eliminate Dengue virus. However, whether this strategy can successfully control vector-borne diseases is debated; particularly, how artificial infection affects population dynamics of hosts remains unclear.
View Article and Find Full Text PDFThe ultrafast femtochemistry of carotenoids is governed by the interaction between electronic excited states, which has been explained by the relaxation dynamics within a few hundred femtoseconds from the lowest optically allowed excited state S2 to the optically dark state S1. Extending this picture, some additional dark states (3A(g)(-) and 1B(u)(-)) and their interaction with the S2 state have also been suggested to play a major role in the ultrafast deactivation of carotenoids and their properties. Here, we investigate the interaction between such dark and bright electronic excited states of open chain carotenoids, particularly its dependence on the number of conjugated double bonds (N).
View Article and Find Full Text PDFFront Microbiol
October 2015
Plants affect microbial communities and abiotic properties of nearby soils, which in turn influence plant growth and interspecific interaction, forming a plant-soil feedback (PSF). PSF is a key determinant influencing plant population dynamics, community structure, and ecosystem functions. Despite accumulating evidence for the importance of PSF and development of specific PSF models, different models are not yet fully integrated.
View Article and Find Full Text PDFThe "rare biosphere" consisting of thousands of low-abundance microbial taxa is important as a seed bank or a gene pool to maintain microbial functional redundancy and robustness of the ecosystem. Here we investigated contemporaneous growth of diverse microbial taxa including rare taxa and determined their variability in environmentally distinctive locations along a north-south transect in the Pacific Ocean in order to assess which taxa were actively growing and how environmental factors influenced bacterial community structures. A bromodeoxyuridine-labeling technique in combination with PCR amplicon pyrosequencing of 16S rRNA genes gave 215-793 OTUs from 1200 to 3500 unique sequences in the total communities and 175-299 OTUs nearly 860 to 1800 sequences in the active communities.
View Article and Find Full Text PDFThe structure of FeOx species supported on γ-Al2 O3 was investigated by using Fe K-edge X-ray absorption fine structure (XAFS) and X-ray diffraction (XRD) measurements. The samples were prepared through the impregnation of iron nitrate on Al2 O3 and co-gelation of aluminum and iron sulfates. The dependence of the XRD patterns on Fe loading revealed the formation of α-Fe2 O3 particles at an Fe loading of above 10 wt %, whereas the formation of iron-oxide crystals was not observed at Fe loadings of less than 9.
View Article and Find Full Text PDFReciprocal interaction between plant and soil (plant-soil feedback, PSF) can determine plant community structure. Understanding which traits control interspecific variation of PSF strength is crucial for plant ecology. Studies have highlighted either plant-mediated nutrient cycling (litter-mediated PSF) or plant-microbe interaction (microbial-mediated PSF) as important PSF mechanisms, each attributing PSF variation to different traits.
View Article and Find Full Text PDF