Publications by authors named "Takeshi Komino"

Bowl-shaped plasmonic whispering gallery mode (WGM) resonators were fabricated from a 10-nm-thick metal (Al, Ag, or Au) plasmonic layer that was covered with a 100-nm-thick 4,4'-bis(-carbazolyl)-1,1'-biphenyl spacer layer and a 250-nm-thick 2,7-bis[9,9-di(4-methylphenyl)-fluoren-2-yl]-9,9-di(4-methylphenyl)fluorene light-emitting layer; the layer structure was grown on a 20-μm-diameter silica microsphere. When compared with a reference structure without the plasmonic layer, the resonators, which included either Al or Ag, showed almost the same threshold excitation intensities for generation of amplified spontaneous emission (ASE). This result indicates that the ease of light amplification in the plasmonic resonators was comparable to that in the reference structure.

View Article and Find Full Text PDF

Exciton energy transfer in organic whispering-gallery-mode (WGM) resonators and its effect on the amplified spontaneous emission (ASE) threshold have been investigated using the stilbene-based energy donor 4,4'-bis[(-carbazole)styryl]biphenyl (BSB-Cz) and the coumarin-based energy acceptor 2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1,5,11-10-(2-benzothiazolyl)quinolizino[9,9a,1gh]coumarin (C545T). Using the stacked-layer structure of BSB-Cz/C545T/BSB-Cz, we fabricated bowl-shaped microresonators on silica microspheres with a total thickness of 250 nm fixing the thickness of the C545T layer to 1 nm. The ASE threshold depended on the thicknesses of the top and bottom BSB-Cz layers, which affect the magnitude of the energy transfer.

View Article and Find Full Text PDF

A simple way to control only the surface properties of polymer materials, without changing the bulk properties, has long been desired. The segregation behavior when a component with a tiny amount fed into the matrix is thermodynamically enriched at the surface is one of the candidate methods. This capability was examined herein by focusing on a star-shaped polyhedral oligomeric silsesquioxane (s-POSS), where the central POSS unit is tethered to eight isobutyl-substituted POSS cages as a surface modifier.

View Article and Find Full Text PDF

Organic light-emitting diode (OLED) technology is promising for applications in next-generation displays and lighting. However, it is difficult-especially in large-area mass production-to cover a large substrate uniformly with organic layers, and variations in thickness cause the formation of shunting paths between electrodes, thereby lowering device production yield. To overcome this issue, thicker organic transport layers are desirable because they can cover particles and residue on substrates, but increasing their thickness increases the driving voltage because of the intrinsically low charge-carrier mobilities of organics.

View Article and Find Full Text PDF

The inclusion of a tetraphenylbenzene (4Ph) unit in thermally activated delayed fluorescence emitters is demonstrated as a novel strategy for greatly enhancing the horizontally oriented alignment of the emitters without shifting the emission spectrum to longer wavelengths. Doping of blue-emitting 4PhOXDDMAC or greenish-blue-emitting 4PhOXDPXZ into o-DiCbzBz host layers yielded much higher degrees of horizontally oriented alignment for the emitter (up to 92%) compared to those when the 4Ph unit was excluded (69 and 75%, respectively). The enhanced alignment results in high outcoupling efficiencies of 24 and 35% in organic light-emitting diodes based on 4PhOXDDMAC and 4PhOXDPXZ, respectively, and boosts the external quantum efficiencies to values (8.

View Article and Find Full Text PDF

The development of host materials with high performance is essential for fabrication of efficient and stable organic light-emitting diodes (OLEDs). Although host materials used in OLEDs are typically organics, in this study, it is shown that the organic-inorganic perovskite CH NH PbCl (MAPbCl ) can be used as a host layer for OLEDs. Vacuum-evaporated MAPbCl films have a wide band gap of about 3 eV and very high and relatively balanced hole and electron mobilities, which are suitable for the host material.

View Article and Find Full Text PDF

The influences of film density and molecular orientation on the carrier conduction and air stability of vacuum-deposited amorphous organic films of N,N'-di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine (α-NPD) were investigated. The substrate temperature (T) during vacuum deposition had different effects on the film density and molecular orientation of α-NPD. Film density was a concave function of T; maximum density was attained at T = 270-300 K.

View Article and Find Full Text PDF

The dipole orientation of guest emitters doped into host matrices is usually investigated by angular dependent photoluminescence (PL) measurements, which acquire an out-of-plane PL radiation pattern of the guest-host thin films. The PL radiation patterns generated by these methods are typically analysed by optical simulations, which require expertise to perform and interpret in the simulation. In this paper, we developed a method to calculate an orientational order parameter S without the use of full optical simulations.

View Article and Find Full Text PDF

Thermally activated delayed fluorescence (TADF) materials have shown great potential for highly efficient organic light-emitting diodes (OLEDs). While the current molecular design of TADF materials primarily focuses on combining donor and acceptor units, we present a novel system based on the use of excited-state intramolecular proton transfer (ESIPT) to achieve efficient TADF without relying on the well-established donor-acceptor scheme. In an appropriately designed acridone-based compound with intramolecular hydrogen bonding, ESIPT leads to separation of the highest occupied and lowest unoccupied molecular orbitals, resulting in TADF emission with a photoluminescence quantum yield of nearly 60%.

View Article and Find Full Text PDF

By preparing parallelly aligned 1.9-μm-high SiO microfluidic channels on an indium tin oxide substrate surface, the solution flow direction during spin-coating was controlled to be parallel to the grating. Using this technique, a pentafluorene-4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP) binary solution in chloroform was spin-coated to embed a 40-50 nm-thick 10 wt %-pentafluorene:CBP thin film in the channels.

View Article and Find Full Text PDF

Improving the performance of blue organic light-emitting diodes (OLEDs) is needed for full-colour flat-panel displays and solid-state lighting sources. The use of thermally activated delayed fluorescence (TADF) is a promising approach to efficient blue electroluminescence. However, the difficulty of developing efficient blue TADF emitters lies in finding a molecular structure that simultaneously incorporates (i) a small energy difference between the lowest excited singlet state (S) and the lowest triplet state (T), ΔE , (ii) a large oscillator strength, f, between S and the ground state (S), and (iii) S energy sufficiently high for blue emission.

View Article and Find Full Text PDF

Efficient organic light-emitting diodes have been developed using emitters containing rare metals, such as platinum and iridium complexes. However, there is an urgent need to develop emitters composed of more abundant materials. Here we show a thermally activated delayed fluorescence material for organic light-emitting diodes, which realizes both approximately 100% photoluminescence quantum yield and approximately 100% up-conversion of the triplet to singlet excited state.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how the substrate temperature during the deposition of chloroaluminum phthalocyanine (ClAlPc) films affects their morphology, orientation, and crystallinity using techniques like spectroscopic ellipsometry, x-ray diffraction, and atomic force microscopy.
  • Increasing the substrate temperature from room temperature to 420 K results in larger grain sizes, increased molecular tilt angles, and red-shifting of UV-vis absorption peaks, indicating enhanced molecular alignment and π-stacking.
  • Photovoltaic cells made with ClAlPc films deposited at 390 K show significant improvements in power conversion efficiency (28% for neat films and 36% for blend films), with the best short circuit current achieved at that temperature range.
View Article and Find Full Text PDF

Combining droplet manipulation by the application of an electric field with inkjet printing is proposed as a unique technique to control the surface wettability of substrates for solution-processed organic field-effect transistors (FETs). With the use of this technique, uniform thin films of 2,7-dioctyl[1]benzothieno[2,3,-b][1]benzothiopene (C8-BTBT) could be fabricated on the channels of FET substrates without self-assembled monolayer treatment. High-speed camera observation revealed that the crystals formed at the solid/liquid interface.

View Article and Find Full Text PDF