In observational/field studies, competing risks and left-truncation may co-exist, yielding 'left-truncated competing risks' settings. Under the assumption of independent competing risks, parametric estimation methods were developed for left-truncated competing risks data. However, competing risks may be dependent in real applications.
View Article and Find Full Text PDFStat Methods Med Res
January 2024
Factorial analyses offer a powerful nonparametric means to detect main or interaction effects among multiple treatments. For survival outcomes, for example, from clinical trials, such techniques can be adopted for comparing reasonable quantifications of treatment effects. The key difficulty to solve in survival analysis concerns the proper handling of censoring.
View Article and Find Full Text PDFPrognostic analysis for patient survival often employs gene expressions obtained from high-throughput screening for tumor tissues from patients. When dealing with survival data, a dependent censoring phenomenon arises, and thus the traditional Cox model may not correctly identify the effect of each gene. A copula-based gene selection model can effectively adjust for dependent censoring, yielding a multi-gene predictor for survival prognosis.
View Article and Find Full Text PDFA survival tree can classify subjects into different survival prognostic groups. However, when data contains high-dimensional covariates, the two popular classification trees exhibit fatal drawbacks. The logrank tree is unstable and tends to have false nodes; the conditional inference tree is difficult to interpret the adjusted -value for high-dimensional tests.
View Article and Find Full Text PDFCorrelations among survival endpoints are important for exploring of the true endpoint. With a valid surrogate endpoint tightly correlated with the true endpoint, the efficacy of a new drug/treatment can be measurable on it. However, the existing methods for measuring correlation between two endpoints impose an invalid assumption: correlation structure is constant across different treatment arms.
View Article and Find Full Text PDFCopula-based survival regression models, which consist of a copula function and marginal distribution (i.e., marginal survival function), have been widely used for analyzing clustered multivariate survival data.
View Article and Find Full Text PDFIn a meta-analysis framework, the classical approach for the validation of time-to-event surrogate endpoint is based on a two-step analysis. This approach often raises estimation issues. Recently, we proposed a one-step validation approach based on a joint frailty model.
View Article and Find Full Text PDFFor the analysis of competing risks data, three different types of hazard functions have been considered in the literature, namely the cause-specific hazard, the sub-distribution hazard, and the marginal hazard function. Accordingly, medical researchers can fit three different types of the Cox model to estimate the effect of covariates on each of the hazard function. While the relationship between the cause-specific hazard and the sub-distribution hazard has been extensively studied, the relationship to the marginal hazard function has not yet been analyzed due to the difficulties related to non-identifiability.
View Article and Find Full Text PDFA surrogate endpoint can be used instead of the most relevant clinical endpoint to assess the efficiency of a new treatment. Before being used, a surrogate endpoint must be validated based on appropriate methods. Numerous validation approaches have been proposed with the most popular used in a context of meta-analysis, based on a two-step analysis strategy.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2019
Background And Objective: Univariate feature selection is one of the simplest and most commonly used techniques to develop a multigene predictor for survival. Presently, there is no software tailored to perform univariate feature selection and predictor construction.
Methods: We develop the compound.
Developing a personalized risk prediction model of death is fundamental for improving patient care and touches on the realm of personalized medicine. The increasing availability of genomic information and large-scale meta-analytic data sets for clinicians has motivated the extension of traditional survival prediction based on the Cox proportional hazards model. The aim of our paper is to develop a personalized risk prediction formula for death according to genetic factors and dynamic tumour progression status based on meta-analytic data.
View Article and Find Full Text PDFStat Methods Med Res
December 2017
Dependent censoring often arises in biomedical studies when time to tumour progression (e.g., relapse of cancer) is censored by an informative terminal event (e.
View Article and Find Full Text PDFDoubly truncated data consist of samples whose observed values fall between the right- and left- truncation limits. With such samples, the distribution function of interest is estimated using the nonparametric maximum likelihood estimator (NPMLE) that is obtained through a self-consistency algorithm. Owing to the complicated asymptotic distribution of the NPMLE, the bootstrap method has been suggested for statistical inference.
View Article and Find Full Text PDFStat Methods Med Res
December 2016
Dependent censoring arises in biomedical studies when the survival outcome of interest is censored by competing risks. In survival data with microarray gene expressions, gene selection based on the univariate Cox regression analyses has been used extensively in medical research, which however, is only valid under the independent censoring assumption. In this paper, we first consider a copula-based framework to investigate the bias caused by dependent censoring on gene selection.
View Article and Find Full Text PDFSurvival prediction from a large number of covariates is a current focus of statistical and medical research. In this paper, we study a methodology known as the compound covariate prediction performed under univariate Cox proportional hazard models. We demonstrate via simulations and real data analysis that the compound covariate method generally competes well with ridge regression and Lasso methods, both already well-studied methods for predicting survival outcomes with a large number of covariates.
View Article and Find Full Text PDF