Publications by authors named "Takeru Zama"

Irinotecan is a key chemotherapeutic drug used to treat many tumors, including cervical and ovarian cancers; however, irinotecan can cause toxicity, particularly in the presence of uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1) gene polymorphisms, which are associated with reduced enzyme activity. Here, we investigated the prevalence of three different variants of UGT1A1 (UGT1A1*6, UGT1A1*27 and UGT1A1*28) and their relationships with irinotecan-induced adverse events in patients with gynecologic cancer, who are treated with lower doses of irinotecan than patients with other types of solid tumors. Fifty-three female patients treated with irinotecan and 362 female patients not treated with irinotecan were screened for UGT1A1*6, UGT1A1*27 and UGT1A1*28.

View Article and Find Full Text PDF

Background: MicroRNA (miRNA) is an emerging subclass of small non-coding RNAs that regulates gene expression and has a pivotal role for many physiological processes including cancer development. Recent reports revealed the role of miRNAs as ideal biomarkers and therapeutic targets due to their tissue- or disease-specific nature. Head and neck cancer (HNC) is a major cause of cancer-related mortality and morbidity, and laryngeal cancer has the highest incidence in it.

View Article and Find Full Text PDF

ATF3 (Activating transcription factor 3), a member of the CREB/ATF family, can be induced by stress and growth factors in mammalian cells, and is thought to play an important role in the cardiovascular system. However, little is currently known about how the induction of ATF3 is regulated, except that the JNK pathway is involved. Here, we investigated the differential roles of the MAPK pathways involved in TNFalpha (tumour necrosis factor alpha)-induced ATF3 expression in vascular endothelial cells.

View Article and Find Full Text PDF

Stress-activated protein kinase (SAPK) pathway-regulating phosphatase 1 (SKRP1) has been identified as a member of the mitogen-activated protein kinase (MAPK) phosphatase (MKP) family that interacts physically with the MAPK kinase (MAPKK) MKK7, a c-Jun N-terminal kinase (JNK) activator, and inactivates the MAPK JNK pathway. Although these findings indicated that SKRP1 contributes to the precise regulation of JNK signaling, it remains to be elucidated how SKRP1 is integrated into this pathway. We report that SKRP1 also plays a scaffold role for the JNK signaling, judged by the following observations.

View Article and Find Full Text PDF

Mitogen-activated protein kinases (MAPKs) are activated in response to various extracellular stimuli, and their activities are regulated by upstream activating kinases and protein phosphatases such as MAPK phosphatases (MKPs). We report the identification and characterization of a novel MKP termed SKRP1 (SAPK pathway-regulating phosphatase 1). It contains an extended active site sequence motif conserved in all MKPs but lacks a Cdc25 homology domain.

View Article and Find Full Text PDF