Publications by authors named "Takeo Moriya"

Sulphur-containing compounds have been linked to colorectal cancer by factors such as the presence of methyl mercaptan in intestinal gas and long-term dietary intake associated with sulphur-metabolizing microbiota. Therefore, this current case report hypothesized that active sulphur metabolism in colorectal cancer results in the formation of sulphur compounds in the intestine and, thus, examined sulphur metabolites possibly associated with sulphur respiration in colon cancer tissues. The patient was a 73-year-old female that underwent laparoscopic right hemicolectomy for ascending colon cancer.

View Article and Find Full Text PDF

Inspired by natural living things such as lotus leaves and pitcher plants, researchers have developed many excellent antifouling coatings. In particular, hot-water-repellent surfaces have received much attention in recent years because of their wide range of applications. However, coatings with stability against boiling in hot water have not been achieved yet.

View Article and Find Full Text PDF

We initiated our structure-activity relationship (SAR) studies for selective ACC1 inhibitors from 1a as a lead compound. SAR studies of bicyclic scaffolds revealed many potent and selective ACC1 inhibitors represented by 1f; however most of them had physicochemical issues, particularly low aqueous solubility and potent CYP inhibition. To address these two issues and improve the druglikeness of this chemical series, we converted the bicyclic scaffold into a monocyclic framework.

View Article and Find Full Text PDF

While endogenous metabolites in plasma can be used as clinical biomarkers, intra-day variations should be carefully considered. The postprandial effect is a large contributing factor and is dependent on regional features (e.g.

View Article and Find Full Text PDF

Control of vapor condensation properties is a promising approach to manage a crucial part of energy infrastructure conditions. Heat transfer by vapor condensation on superhydrophobic coatings has garnered attention, because dropwise condensation on superhydrophobic surfaces with rough structures leads to favorable heat-transfer performance. However, pinned condensed water droplets within the rough structure and a high thermodynamic energy barrier for nucleation of superhydrophobic surfaces limit their heat-transfer increase.

View Article and Find Full Text PDF

Manually controllable "hand-operated" smart systems have been developed in many fields, including smart wetting materials, electronic devices, molecular machines, and drug delivery systems. Because complex morphological or chemical control are generally required, versatile strategies for constructing the system are technologically important. Inspired by the natural phenomenon of raindrops rarely bouncing and usually spreading on a puddle, we introduce a droplet-impact-triggering smart-wetting system using "non-smart" smooth liquid coating materials.

View Article and Find Full Text PDF

We fabricated slippery liquid-immobilized coating (SLIC) films by reacting a slippery liquid (polymethylhydrosiloxane) near the surface of a polyelectrolyte film containing silver ions prepared by the layer-by-layer method. The obtained films maintained their slipperiness after chemical and physical treatments, in contrast to slippery liquid-infused porous surfaces. The high chemical and physical stabilities of the films were attributable to gelation and immobilization of the lubricant owing to an oxidation-reduction reaction with subsequent dehydration condensation of Si-OH on the outer surface of the polyelectrolyte film and the bonding of Si-H with NH groups within the polyelectrolyte film, respectively.

View Article and Find Full Text PDF

In this letter, we introduce a novel liquid manipulation strategy to design dynamically hydrophobic and statically hydrophobic/hydrophilic patterned surfaces using an "omniphobicity"-based technique. The surfaces guide the sliding direction of a droplet in the presence of a statically hydrophilic area where the droplet does not stick on the transport path significantly enhancing the fluidic system transport efficiency. The concept of dynamically hydrophobic and statically hydrophobic/hydrophilic patterned surfaces in conjunction with omniphobic patterning techniques having surface multifunctionality, we believe, has potential not only for fluidic applications but also for future material engineering development.

View Article and Find Full Text PDF

Inspired by biointerfaces, such as the surfaces of lotus leaves and pitcher plants, researchers have developed innovative strategies for controlling surface wettability and transparency. In particular, great success has been achieved in obtaining low adhesion and high transmittance via the introduction of a liquid layer to form liquid-infused surfaces. Furthermore, smart surfaces that can change their surface properties according to external stimuli have recently attracted substantial interest.

View Article and Find Full Text PDF

We describe a novel method for the simple and eco-friendly fabrication of porous polyelectrolyte films. A polyelectrolyte with many amine groups undergoes structural transformation from a dense to a porous structure upon immersion in a specific metal ion solution. The porous transition was the result of a reaction-induced phase separation, which was caused by the formation of new bonds between the polyelectrolyte and metal ions.

View Article and Find Full Text PDF

We isolated a cDNA encoding an orphan G protein-coupled receptor, TGR7, which has been recently reported to correspond to MrgD. To search for ligands for TGR7, we screened a series of small molecule compounds by detecting the Ca2+ influx in Chinese hamster ovary cells expressing TGR7. Through this screening, we found that beta-alanine at micromolar doses specifically evoked Ca2+ influx in cells expressing human, rat, or mouse TGR7.

View Article and Find Full Text PDF