Objective: Infection triggers inflammation that, in turn, enhances the expression of contractile-associated factors in myometrium and increases the risk of preterm delivery. In this study, we assessed vitamin D regulation of inflammatory markers, contractile-associated factors, steroid hormone receptors, and NFκB pathway proteins in human uterine myometrial smooth muscle (UtSM) cells that were cultured in an inflammatory environment.
Study Design: Inflammatory environment was simulated for UtSM cells by coculturing them with monocyte lineage (THP1) cells.
Infection during pregnancy triggers inflammation, which can increase myometrial contractions and the risk of premature labor and delivery. In this study, we assessed the effects of vitamin D, an anti-inflammatory ligand on cytokines, chemokines, toll-like receptors, and contractile-associated proteins on immortalized human myometrial smooth muscle (UtSM) cells stimulated with lipopolysaccharide (LPS), a bacterial endotoxin, or interleukin (IL)-1β and measured Toll-like receptor (TLR)-10 expression in pregnant myometrial tissues. A superarray analysis revealed downregulation of the chemokines monocyte chemoattractant protein (MCP)-1, Chemokine (C-X-C motif) ligand (CXCL)-10, CXCL-11, and chemokine (C-X3-C motif) ligand (CX3CL)-1; the proinflammatory cytokines IL-13 and tumor necrosis factor (TNF)-α; the TLR-4 and -5 and triggering receptor expressed on myeloid cells (TREM)-2 and upregulation of the anti-inflammatory cytokine IL-10, as well as Toll interacting protein (TOLLIP) and TREM-1 in vitamin D-treated UtSM cells.
View Article and Find Full Text PDFBackground And Purpose: Struvite in kidney stones is an important marker for infection. In kidney stone samples, struvite is known to be prone to chemical breakdown, but no data exist on the stability of samples stored in dry form. The objective of this study was to examine stability of struvite under increasingly poor conditions of storage.
View Article and Find Full Text PDFMutations among genes that participate in the canonical Wnt signaling pathway can lead to drastically different skeletal phenotypes, ranging from severe osteoporosis to severe osteosclerosis. Many high-bone-mass (HBM) causing mutations that occur in the LRP5 gene appear to impart the HBM phenotype, in part, by increasing resistance to soluble Wnt signaling inhibitors, including sclerostin. Sost loss-of-function mutant mice (Sost knock-out) and Lrp5 gain-of-function mutant mice (Lrp5 HBM knock-in) have high bone mass.
View Article and Find Full Text PDFUrinary kidney injury molecule (KIM-1) is a sensitive quantitative biomarker for early detection of kidney tubular injury. The objective of the present work was to analytically validate this urinary renal injury biomarker. Duo-set reagents from R&D were used to develop the ELISA and validate the assay's linearity, intra-run precision, inter-run precision, lower limit of quantification, recovery, dilutional verification, reference range, stability, and length of run.
View Article and Find Full Text PDF