Publications by authors named "Takehito Yoshida"

Understanding mechanisms that promote the maintenance of biodiversity (genetic and species diversity) has been a central topic in evolution and ecology. Previous studies have revealed that diapause can contribute to coexistence of competing genotypes or species in fluctuating environments via the storage effect. However, they tended to focus on differences in reproductive success (e.

View Article and Find Full Text PDF

Background: Traditional resource management (TRM) systems develop depending on local conditions, such as climate, culture, and environment. Most studies have focused on the TRM system itself, excluding the people who manage the system, and the relationship between the system and the people. The use of resources and people is intimately linked through the practice of TRM systems on Gau Island and this relationship needs to be understood to advance sustainable resource use.

View Article and Find Full Text PDF

An increase in nutrient levels due to eutrophication has considerable effects on lake ecosystems. Cladocerans are intermediate consumers in lake ecosystems; thus, they are influenced by both the bottom-up and top-down effects that occur as eutrophication progresses. The long-term community succession of cladocerans and the effects cladocerans experience through the various eutrophication stages have rarely been investigated from the perspective of the early-stage cladoceran community assemblage during lake formation.

View Article and Find Full Text PDF

The biomass ratio of herbivores to primary producers reflects the structure of a community. Four primary factors have been proposed to affect this ratio, including production rate, defense traits and nutrient contents of producers, and predation by carnivores. However, identifying the joint effects of these factors across natural communities has been elusive, in part because of the lack of a framework for examining their effects simultaneously.

View Article and Find Full Text PDF

Land-use changes, one of the greatest threats to global biodiversity, can cause underappreciated effects on ecosystems by altering the structures of interspecific interaction networks. These effects have typically been explored by evaluating interaction networks composed of a single type of interaction. Therefore, it remains unclear whether the different types of interaction networks sharing the same species respond to the same land-use changes in a similar manner.

View Article and Find Full Text PDF

Light is a fundamental driver of ecosystem dynamics, affecting the rate of photosynthesis and primary production. In spite of its importance, less is known about its community-scale effects on aquatic ecosystems compared with those of nutrient loading. Understanding light limitation is also important for ecosystem management, as human activities have been rapidly altering light availability to aquatic ecosystems.

View Article and Find Full Text PDF

Understanding how ecological and evolutionary processes interdependently structure biosphere dynamics is a major challenge in the era of worldwide ecosystem degradation. However, our knowledge of 'eco-evolutionary feedbacks' depends largely on findings from simple systems representing limited spatial scales and involving few species. Here we review recent conceptual developments for the understanding of multispecies coevolutionary processes and then discuss how new lines of concepts and methods will accelerate the integration of ecology and evolutionary biology.

View Article and Find Full Text PDF

Filament formation is a common bacterial defense mechanism and possibly has a broad impact on microbial community dynamics. In order to examine the impact of filament formation on population dynamics, we developed an experimental system with a filamentous bacterium Flectobacillus sp. MWH38 and a ciliate predator Tetrahymena pyriformis.

View Article and Find Full Text PDF

Studies of catastrophic regime shifts have mostly considered a simple equilibrium situation, in which there are two stable equilibria divided by an unstable equilibrium. However, populations and communities in nature often show more complex dynamics, and regime shifts in the complex dynamic systems have attracted limited attention so far. Understanding the division between alternative stable states in multispecies communities requires an extended perspective and the conventional analysis of a simple equilibrium situation cannot be applied as it is.

View Article and Find Full Text PDF

Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e.

View Article and Find Full Text PDF

Theory of invasion ecology indicates that the number of invading individuals (propagule size) and the timing of invasion are important for invasion success. Propagule size affects establishment success due to an Allee effect and the effect of demographic stochasticity, whereas the timing of invasion does so via niche opportunity produced by fluctuating predation pressure and resource abundance. We propose a synthesis of these two mechanisms by a time-varying dose-response curve where the dose is propagule size and the response is establishment probability.

View Article and Find Full Text PDF

In the past couple of decades, molecular ecological techniques have been developed to elucidate microbial diversity and distribution in microbial ecosystems. Currently, modern techniques, represented by meta-omics and single cell observations, are revealing the incredible complexity of microbial ecosystems and the large degree of phenotypic variation. These studies propound that microbiological techniques are insufficient to untangle the complex microbial network.

View Article and Find Full Text PDF

The metacommunity perspective has attracted much attention recently, but the understanding of how dispersal between local communities alters their ecological dynamics is still limited, especially regarding the effect of non-random, unequal dispersal of organisms. This is a study of a three-trophic-level (predator-prey-resource) system that is connected by different manners of dispersal. The model is based on a well-studied experimental system cultured in chemostats (continuous flow-through culture), which consists of rotifer predator, algal prey and nutrient.

View Article and Find Full Text PDF

Ecologists have increasingly focused on how rapid adaptive trait changes can affect population dynamics. Rapid adaptation can result from either rapid evolution or phenotypic plasticity, but their effects on population dynamics are seldom compared directly. Here we examine theoretically the effects of rapid evolution and phenotypic plasticity of antipredatory defense on predator-prey dynamics.

View Article and Find Full Text PDF

Character evolution that affects ecological community interactions often occurs contemporaneously with temporal changes in population size, potentially altering the very nature of those dynamics. Such eco-evolutionary processes may be most readily explored in systems with short generations and simple genetics. Asexual and cyclically parthenogenetic organisms such as microalgae, cladocerans and rotifers, which frequently dominate freshwater plankton communities, meet these requirements.

View Article and Find Full Text PDF

Trophic relationships, such as those between predator and prey or between pathogen and host, are key interactions linking species in ecological food webs. The structure of these links and their strengths have major consequences for the dynamics and stability of food webs. The existence and strength of particular trophic links has often been assessed using observational data on changes in species abundance through time.

View Article and Find Full Text PDF

Using rotifer-algal microcosms, we tracked rapid evolution resulting from temporally changing natural selection in ecological predator-prey dynamics. We previously demonstrated that predator-prey oscillations in rotifer-algal laboratory microcosms are qualitatively altered by the presence of genetic variation within the prey. In that study, changes in algal gene frequencies were inferred from their effects on population dynamics but not observed directly.

View Article and Find Full Text PDF

Inadequate supply of one or more mineral elements can slow the growth of animal consumers and alter their physiology, life history and behaviour. A key concept for understanding nutrient deficiency in animals is the threshold elemental ratio (TER), at which growth limitation switches from one element to another. We used a stoichiometric model that coupled animal bioenergetics and body elemental composition to estimate TER of carbon and phosphorus (TER(C:P)) for 41 aquatic consumer taxa.

View Article and Find Full Text PDF

A variety of mechanisms can theoretically produce competitive coexistence in nature, making it hard to identify a single explanation for the maintenance of diversity in any particular system. Based on laboratory experiments with a consumer-resource system of crustacean Daphnia eating algae, Nelson et al. suggest that maintenance of genetic diversity in the consumer populations they studied depends only on the dynamics of the population structure of the consumer.

View Article and Find Full Text PDF

Trade-offs between defence and other fitness components are expected in principle, and can have major qualitative impacts on ecological dynamics. Here we show that such a trade-off exists even in the simple unicellular alga Chlorella vulgaris. We grew algal populations for multiple generations in either the presence ('grazed algae') or absence ('non-grazed algae') of the grazing rotifer Brachionus calyciflorus, and then evaluated their defence and competitive abilities.

View Article and Find Full Text PDF

Ecological and evolutionary dynamics can occur on similar timescales. However, theoretical predictions of how rapid evolution can affect ecological dynamics are inconclusive and often depend on untested model assumptions. Here we report that rapid prey evolution in response to oscillating predator density affects predator-prey (rotifer-algal) cycles in laboratory microcosms.

View Article and Find Full Text PDF

To examine both direct and indirect effects of macrozooplankton on phytoplankton species in Lake Biwa, we conducted in situ grazer-gradient experiments under different nutrient levels in summer, when Daphnia galeata dominated, and in autumn, when Eodiaptomus japonicus dominated. The experiments revealed that grazing pressure on phytoplankton was highly dependent on zooplankton species composition. Smaller phytoplankton species such as Stephanodiscus carconensis were more grazed when D.

View Article and Find Full Text PDF

Macrozooplankton may affect algal and microbial plankton directly through grazing or predation and indirectly through nutrient regeneration. They may also affect potential prey positively by removing alternative predators. Here, we examined the effects of a cladoceran (Daphnia) and a calanoid copepod (Eodiaptomus) on algal and microbial plankton in a Japanese lake using in situ experiments in which we manipulated the nutrient supply and biomass of these macrozooplankton.

View Article and Find Full Text PDF

The highly stereoselective total synthesis of the macrolide antibiotic, bafilomycin A(1) (1), the first specific potent inhibitor of vacuolar H(+)-ATPase, has been achieved by a convergent route involving the synthesis and coupling of its 16-membered tetraenic lactone and beta-hydroxyl hemiacetal side-chain subunits. The C1-C17 16-membered lactone aldehyde 2 was synthesized through the coupling of the C5-C11 vinyl iodide 4 and the C12-C17 vinylstannane 5, followed by construction of the C1-C4 diene and macrolactonization. The aldol coupling of 2 and the C18-C25 ethyl ketone 3 followed by desilylation provided 1, which was identical with natural bafilomycin A(1).

View Article and Find Full Text PDF