To better understand the regulation and function of cellular interactions, three-dimensional (3D) assemblies of single cells and subsequent functional analysis are gaining popularity in many research fields. While we have developed strategies to build stable cellular structures using optical tweezers in a minimally invasive state, methods for manipulating a wide range of cell types have yet to be established. To mimic organ-like structures, the construction of 3D cellular assemblies with variety of cell types is essential.
View Article and Find Full Text PDFRegenerative medicine and tissue engineering offer several advantages for the treatment of intractable diseases, and several studies have demonstrated the importance of 3-dimensional (3D) cellular assemblies in these fields. Artificial scaffolds have often been used to construct 3D cellular assemblies. However, the scaffolds used to construct cellular assemblies are sometimes toxic and may change the properties of the cells.
View Article and Find Full Text PDFPOU domain proteins are a family of critical regulators of development and differentiation due to their transcriptional activity in the nucleus. Skn‑1a, a member of the POU domain protein family, appears to be expressed predominantly in epidermal keratinocytes and is thought to play a critical role in keratinocyte differentiation and proliferation. In this study, we examined the mechanisms involved in the nuclear localization of Skn‑1a.
View Article and Find Full Text PDF